

© G. Born – Windows Scripting Host Tutorial

2 Development Tools
This chapter introduces tools and techniques to simplify script development. I will introduce some
editors, some techniques to get further information about ActiveX controls and some debugging
tools.

A few tips to edit scripts
Below I will discuss how to create and edit script files. I will introduce some techniques, which
simplifies this step.

How to create a script?
A script can be prepared directly using the Windows Editor (Notepad). Launch Notepad and enter
the statements using the syntax of the selected script language. I have discussed this technique
already in chapter 1.

Figure 2.1.
Save a script file within the Windows Editor

22 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

Afterward store the script program in a script file. For VBScript use a text file with the file name
extension .vbs, and for JScript use the file name extension .js (Figure 2.1).

TIP: Set the Save as type within the Save As dialog on All files (*.*). In this case the Save
As dialog shows you all script files already stored in the destination folder.

Building a script from scratch isn't the optimal way. If you use for instance the header – I have
proposed in chapter 1 – you must add these comments each time you create a new script. In chap-
ter 1 I mentioned the template files VBScript.vbs and JScript.js you can use to build script files.
What do you think about expanding the Windows shortcut menu with two new commands? These
two commands enable you to create VBScript or JScript files based on the templates in any folder
(Figure 2.2).

Figure 2.2:
Creating a new script file using the shortcut menu

Basically you have already all resources to do this – just configure Windows in a way that it
knows script templates:

1. Open the folder \samples\chapter01 from the sample files. This folder contains the two tem-
plates files (VBScript.vbs and JScript.js) mentioned in chapter 1. Copy both files into a local
folder on your hard disk.

2. Open the Control Panel, double-click on the Tweak UI icon and select the New property page.

3. Drag one template file from your folders window onto the New property page (Figure 2.3). If
you release the left mouse button, Tweak UI creates a new entry for the template on the prop-
erty page.

4. Repeat this step for the second template file.

Closing the New property page using the OK button causes Tweak UI to copy the files into the
Windows folder \ShellNew and register the new templates.

A few tips to edit scripts 23

© G. Born – Windows Scripting Host Tutorial

Figure 2.3.
Registering a script template using Tweak UI

After processing these steps you will find two new commands in the New shortcut menu (see
Figure 2.2). You can use these commands in any folder to create a new script file.

Note: Tweak UI is a Windows tool to customize the operating system. You must install
Tweak UI explicitly. Windows 98 users may find this module on the Windows 98 CD-
ROM in the folder \tools\reskit\powertoy. Windows 95 and Windows NT 4.0 users may
download a version of Tweak UI from several Internet sites (search www.microsoft.com for
the most recent version of Tweak UI). To install the tool, browse the directory to the folder
with the Tweak UI install files. Right click onto the file Tweakui.inf, and choose Install in
the shortcut menu. After the installation the Tweak UI icon is shown in the control panel
folder.

Edit existing script files?
To load an existing script file into the Windows editor right click the file and choose the Edit
command in the shortcut menu. During installing the Windows Scripting Host the Edit command
is added automatically into the Windows registry.

Define your own Edit script command
Maybe you like to use your own script editor instead of Notepad. Then you need to launch this
editor and load the script file. During script development it comes handy, if you have something

24 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

like a customized EditScript command within the file's shortcut menu. This command shall invoke
the script editor of your choice.

Figure 2.4:
Shortcut menu with a command to edit a script file

Figure 2.4 shows the new EditPlus shortcut command, that may be used to open a script file (.vbs
or .js) within the program EditPlus introduced below. To register this shortcut menu extension use
the steps described below:

1. Select Folder Options in the View menu within the folder window (Windows 9x).

2. Search the registered file type entry for your script file (JScript Script File for instance) on the
File Types property page (Figure 2.5, left). Click the file's entry and use the Edit button on the
property page.

3. Click New within the Edit File Type dialog (Figure 2.5, lower right)

4. Enter the new shortcut menu name into the Action text box within the New Action dialog
(Figure 2.5, upper right).

5. Enter the command (path and exe file name to invoke the application) in the Application used
to perform action text box. The characters %1 are placeholders for the current file (and will be
expanded from Windows during command execution).

Script Editors 25

© G. Born – Windows Scripting Host Tutorial

Figure 2.5.
Registering a new shortcut command

Closing all dialogs and property pages registers the new command for this file type. If you select
such a file type afterward with a right-click, the new shortcut command is shown.

NOTE: Keep in mind to register both file types (.vbs and .js) for scripts. Further
information about registering file types and commands may be found in the title Inside the
Microsoft Windows 98 Registry, Microsoft Press, ISBN 1-57231-824-4.

TIP: A shortcut command Print may be used to print the source code of your script files. If
you use one of the editors introduced below you may print the source code also with line
numbers, which will be helpful during program debugging.

Script Editors
You may use the Windows editor Notepad for creating and editing script files. Unfortunately this
tool provides only rudimentary features to edit a text file. The real problems occur during script
debugging: The Windows Scripting Host parses the source code, and if a faulty statement is found,
or if a runtime error occurs, an error dialog indicates the error code together with a line number
(see Figure 2.6).

26 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

Figure 2.6.
Error dialog shown within script execution

Then you must edit the script file. Unfortunately locating the faulty statement may be awkward
using the Windows editor, because you have to count the source code lines manually. This can't be
done for lengthy scripts. Why not let the editor do this task for you? The following pages present
some script editors, which support line numbering.

Figure 2.7.
EditPlus supports line numbering

Script Editors 27

© G. Born – Windows Scripting Host Tutorial

EditPlus
EditPlus is an Internet-ready 32-bit text editor for Windows 95/98 and NT 4.0, which is distributed
as top-quality shareware (ZDNet Software Library for instance). The editor provides a syntax-
highlighting feature already available for HTML, C/C++, Pearl and Java, which can be extended to
support other languages too. And the most important feature: this editor contains a toolbar with a
button enabling/disabling line numbering within the loaded text file (Figure 2.7).

NOTE: You may download a 30-day evaluation copy of EditPlus from
http://www.editplus.com.

PrimalSCRIPT script editor
PrimalSCRIPT is a powerful script editor for Microsoft Windows, developed by SAPIEN Tech-
nologies, Inc. If you are developing WSH scripts or scripts for different languages, PrimalSCRIPT
is a powerful and versatile editor. The tool provides a consistent user interface and development
environment for several scripting languages. One of the most interesting feature is the possibility
to insert code snippets (for ..., if ... else and so on) into the source for all supported languages.

Figure 2.8.
PrimalSCRIPT script editor

Version 1.0 I have tested during writing the German version of the WSH book doesn't support line
numbering. Instead the current line is shown in the status bar and you may use the Jump line
command to locate the requested line.

28 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

Figure 2.9:
PrimalSCRIPT version 2.0 showing the interface definition for object libraries

The vendor provided me with a preliminary version 2.0 of this tool to write the English version of
this book. Version 2.0 comes with line numbering, a COM interface viewer and much more fea-
tures like debugging support for WSH. You may download a 30 days evaluation copy from their
web site www.sapien.com. This site contains also a »Script Exchange« section where programmers
can get new sample scripts.

Other editors
There are some other editors, which may be used for script editing (but I haven't tested it). Take a
look at CodeMagic. This tool is also a scripting IDE, it is free (in the first version) and fairly cus-
tomizable. The program may be downloaded from http://www.petes-place.com/codemagic.html.
TextPad and NoteTab are both shareware editors NoteTab also has a Light version that's freeware.
Both editors doesn't support text color highlighting.. You can download TextPad from
www.textpad.com and NoteTab from www.notetab.com.

The OLE/COM Object Viewer
As soon as you would like to use external automation objects within a script, you need information
about their interface definition. You must know for instance the program identifier (shortly also
called ProgID), to use the GetObject or the CreateObject method. Furthermore it is important to
know, whether the automation object is registered already under Windows. The Microsoft
OLE/COM Object Viewer provides these information. This is a tool written by Microsoft develop-
ers to analyzes the Windows registry and shows you the object classes, the application IDs, the

http://www.petes-place.com/codemagic.html
http://www.textpad.com/
http://www.notetab.com/

The OLE/COM Object Viewer 29

© G. Born – Windows Scripting Host Tutorial

Type libraries and the interface definitions (which are not of interest for script programmers)
available on the current system (Figure 2.10).

Using the program is similar to the Windows Explorer. At program start the viewer shows you in
the left pane the available classes obtained from the Windows Registry. Double-clicking an icon
opens the sub-branch. If no further sub branches exists, the program shows the registered program
information of the selected icon in the right pane of an associated entry. These information are
obtained from the Registry branch HKEY_CLASSES_ROOT. For script developers these informa-
tion may be quite interesting.

You get for instance the ProgID (Programmatic identifier), under which the concerned component
is registered in Windows. This ProgID is required to access the object. Furthermore the viewer
indicates you the path of the file of the component. These are EXE-, DLL- or OCX-files, from
which the functions of the component are loaded. Using this path you can find out very easily,
whether the concerned component is still required and where the associated files are stored. This
comes handy during uninstalling ActiveX components for instance (see below). Furthermore you
need the path to an OCX-file, if you try to obtain information about the automation interface of an
object using the object browser.

Figure 2.10.
The OLE/Com Object Viewer

NOTE: The OLE/COM Object Viewer is part of several Microsoft development packages
(for instance Visual Studio). You may also download the viewer from the site
http://www.microsoft.com/com/resource/oleview.asp.

30 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

Using the Object Browser
One of the largest problems for a WSH programmer are caused from the missing information
about the features of automation objects. Of course, the best support comes with the help files
shipped with a component. But not all programmers ship an online help. Even as I begun with
scripting, not too much Microsoft documentation about WSH was available. At this time I spend
many hours to read several books about ActiveX programming, I consulted the VBA program-
mer's title I wrote for Microsoft Press and other sources. At this time I had a lot of questions like:
Which objects are available? Which methods do I need? How to get some information about the
properties? If you had an idea, which object to use, you need further information about its inter-
face, its methods and properties. How to get these information, if no documentation is available?

The entire concept behind Windows automation for OLE, COM, ActiveX etc. is based on the
attempt that all automation objects communicate mutually over certain interfaces. Without bearing
you with too much details, we can assume that Windows must keep information somewhere about
the installed automation objects. And there must be a way to obtain an interface description from
the automation objects (to negotiate the interface with other components).

Figure 2.11.
VB 5 CCE with Object Browser window

On the previous page I mentioned that the program OLE/COM Object Viewer retrieves some
information from the Registry. Inspecting such an entry delivers information about the files of a
component, you get the ProgID (which is used in CreateObject to create a reference to an object).
To find out more about an object, we need a tool, which shows all information in a human read-
able format. One tool that can do this for you is the Object Browser provided in the Visual Basic
development environment. And the Visual Basic editor is also included in all Microsoft Office

Classes

Method

Property

Object Browser

Using the Object Browser 31

© G. Born – Windows Scripting Host Tutorial

applications (Word, Excel etc.) or in the Visual Basic 5.0 Controls Creation Edition (VB 5 CCE).
If you have one of these applications you must enter the Visual Basic editor (press Alt+F11 in
Word, Excel etc.). The Object Browser may be invoked using the Object Browser button in the
toolbar of the development environment window (Figure 2.11).

NOTE: The Visual Basic 5 Control Creation Edition (VB 5 CCE) may be downloaded
from Microsoft's Web site (http://www.microsoft.com/gallery/tools/visualbasic/vbcce.asp).
The VB 5 CCE provides a Visual Basic 5.0 development environment without the function
for preparing standalone EXE files. As soon as you install the VB 5 CCE, you dispose of
the concerned VB development environment. We will use this environment in this book in
later chapters to prepare ActiveX controls to extend the Windows Scripting Host
capabilities.

The Object Browser lists in the left pane all classes (objects) within a project. If you select a class,
the right pane shows the methods (marked with a green block) and properties (indicated with a
stylized hand) supported by this object.

Figure 2.12.
Selecting libraries

The objects shown in the Classes window may be selected within the Object Browser's list box
(Figure 2.12). If you select the entry »All Libraries«, the Object Browser shows all objects
(classes) known in the development environment. Or your can select another entry to restrict the
viewed content to a class library. The right pane shows the methods and properties of the selected
object of the class.

Click an object to retrieve the properties and methods within the Object Browser. If you select an
entry (method, property) in the right pane, the definition of the entry is shown in the footer of the
Object Browser's window. For a property you get the information, whether these are read only
items, about the data type and to which class the property belongs. For a method the Object
Browser delivers in addition information about the interface along with the required parameters. In
Figure 2.11 the interface definition of the Echo method is shown for instance.

The Object Browser indicates only the classes (objects as well as their methods and their proper-
ties), which are currently registered within the development environment. If you need information
about a special component, you need to define a reference to the required object library (before
you open the Object Browser). Use the following steps:

1. Open the References dialog box. The References command may be found in the VB 5 CCE in
the Project menu. In the VBA-development environment you must choose the item References
in the Tools menu.

2. Figure 2.13 shows the References dialog (upper left). The list Available References contains
the names of the libraries, which are known in the development environment. A checked

32 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

checkbox in front of an entry indicates the associated Library is used within the project. There-
fore these checked libraries will also be shown in the Object Browser. If the Available Refer-
ences list contains a library that you want to use, check the checkbox in front of the library
name.

3. If the required library is missing in the Available References list, click the Browse button. A
second dialog box is shown (Figure 2.13, right). Browse for the requested library file and se-
lect it within this dialog box.

Figure 2.13.
Defining a new reference to an object library

After closing the Add Reference dialog box using the Open button, and after checking the associ-
ated checkbox in the References dialog box, the Object Browser shows the classes, methods and
properties contained in the object library.

A few other tips

Above I had mentioned already in the OLE/COM Object Viewer section that this tool indicates the
path to the file(s) of a registered automation component. This file contains however the description
of all exported interfaces. As soon as you know the location of the file, you can set the path to the
registered automation component. There are several file types, which may be referenced to get the
interface definitions:

♦ EXE, DLL: These files contains the executable program code of the out of-process-server.

♦ OCX: These files are used to save the code for ActiveX controls.

♦ TLB, OLB, DLL: These files contain Type Libraries: Type Libraries (TLB), Object Libraries
(OLB) and Dynamic Link Libraries (DLL).

Installing/uninstalling ActiveX controls 33

© G. Born – Windows Scripting Host Tutorial

These file types can be selected over the File type list box within the dialog box. The only diffi-
culty exists therein, that you must know the path to the concerned files. Furthermore not each file
delivers the required information in great detail. But I feel, this function is extremely helpfully to
retrieve information about an object, its methods and properties.

Installing/uninstalling ActiveX controls
Within a script you may use objects provided by applications like Microsoft Word or Microsoft
Excel. Other objects are exposed by the WSH itself of by the Windows operating system. Many
objects are provided from ActiveX controls. Some of these ActiveX controls may be downloaded
from the Internet. In some cases these controls comes with a setup program that allows you to
install/uninstall the component.

NOTE: Some authors of ActiveX control include these control into a website. If the
browser detects a missing ActiveX control, a message box asking you whether to install
this component. If you click Yes, the component will be installed on your machine. The
installed ActiveX control can be used also in WSH scripts. Uninstalling this control is
discussed below.

Also, if you develop an ActiveX control using a development environment (like Visual
Basic or the VB 5 CCE), the component is registered automatically on the development
machine and the control is stored in a OCX file.

Before you can use a downloaded ActiveX control within a script, you need to register this control.
Do you dispose of an ActiveX control (an OCX file), which isn't registered yet? If the developer of
the OCX component doesn't provide an install program which overtakes the necessary steps to
register the object, you need to use the program RegSvr32.exe. Microsoft ships this program with
several applications and operating systems. To register the content of an OCX file as an ActiveX
control, use the following command:

RegSvr32.exe C:\Samples\chapter02\BornTest\BornActive.ocx

The program locates the file using the path, analyses files content and adds all requested informa-
tion into the Registry. After this step you can use the ActiveX control within a WSH script.

Figure 2.14.
Options for RegSvr32

34 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

NOTE: RegSvr32.exe is part of all Microsoft development environments. Fortunately a
copy of this program is also shipped with Windows 98. You will find the program in the
Windows System folder. If you invoke this program with the following command:

RegSvr32.exe /?

an error dialog with all possible options for this program is shown (Figure 2.14).

TIP: Within the sample files there is a file \Samples\chapter02\BornTest\OCXReg.reg.
Double-clicking this file once extends the shortcut menu of your OCX files with two new
commands Register OCX and Unregister OCX. One command registers the ActiveX
control contained in the OCX file, and the other command unregisters the ActiveX control.
The folder contains also the web page Active1.htm that registers the OCX control
BornTest.ocx automatically, if you view the page in the Internet Explorer.

Licensing ActiveX controls

Whilst I was developing the samples of this book I discovered a major problem – the licensing of
ActiveX controls. It is not a problem to register an ActiveX control using RegSrv32.exe. The CD-
ROM shipped with Microsoft Windows 98 contains several OCX-files, which might be rather
helpful for a script developer (for instance the file MSInfo.ocx). I have had downloaded also sev-
eral OCX files from websites. After installing these OCX files, I failed to use the objects provided
from these ActiveX controls. Each attempt to access an object after executing the CreateObject
method results in the run-time error »Win32-Error 0x80040112«. Unfortunately this error code is
not documented. So it took me a while till I found out that this error indicates a missing license
info for the control.

Microsoft started a while ago to add a kind of license check to its ActiveX controls. Such ActiveX
controls only works on the target machine, if a valid license key is detected. For some ActiveX
modules it was sufficient to install the VB 5 CCE, for others I need to install Visual Studio 6.0.
For other ActiveX modules I need to install Microsoft Office 97. For instance, the ActiveX control
Mswinsck.ocx is part of the Microsoft Office 97 Developers Edition. Because I own this edition, I
tried to register the OCX file manually using RegSvr32.exe. After getting the licensing error men-
tioned above, I tried to re-install the whole Microsoft Office package, without any positive result.
The OCX control could not be used. Only after a clean install of the whole system I was able to
run the tests. This behavior is caused from the Microsoft Office Setup program that checks the
system during the installation process only for missing components. Components already installed
or present will be left without updating on your machine. So re-installing a feature won't fix the
bad situation of a missing license key. Also many vendors of ActiveX controls use this license
keys. ActiveX controls from these vendors are only useable on the development machine.

And I need to mention another problem. Updating to a new version of some Microsoft products
(like updating to VB 5.0 or VB 6.0) causes licensing conflicts again, because the new controls
requires a different license key as the controls from the previous version. Because Setup won't
change Registry entries for existing components, the license keys won't be updated properly. To
solve this problem, Microsoft provides some tools, which fix the wrong license keys. Microsoft's
support pages (www.microsoft.com) contains two Knowledge Base-Articles Q181854 and
Q194751, discussing such problems during upgrading new controls for VB 5.0/VB 6.0. The tool
Vbe.exe offered for download fixes a few (but not all) problems with VB 5.0 controls. After
installing Visual Basic 6.0 my problems with these controls was gone. Missing license information
for updated VB 6.0 controls may be fixed using the tool VB6Cli.exe (downloadable from the same
web site).

ActiveX controls works like an onion: internally they refer to other ActiveX controls. It is highly
probable that the dependencies caused by this architecture results in missing components on the

Installing/uninstalling ActiveX controls 35

© G. Born – Windows Scripting Host Tutorial

target machine. Then you are not able to use the control. As long as such packages are distributed
in whole, it will be no problem. But ActiveX controls are offered many times for download from
websites. And then you take a high risk that not all parts of the »game« are already on your ma-
chine. Just another »joke« which caused me a few more gray hairs. During developing the samples
for the German version of this book, I had installed Visual Studio for a week on my development
machine. So I could use many ActiveX controls coming with this package. Then I send over parts
of the samples to my technical editor for testing. And he reported that nearly all my samples using
external OCX files won't work (for licensing reasons), till the VB 5 CCE is installed. And a few
examples depends on an installed Visual Studio 6.0. So I kept my test machines as clean as possi-
ble (no Visual Studio installed), to recognize missing components. But this situation is really bad,
especially for the non-experienced script programmers.

Uninstalling OCX files
Above it was shown, how to install an ActiveX control. After installing ActiveX controls using
RegSvr32.exe, or after using a development environment like Visual Basic or VB 5 CCE to create
your own controls, your system (and your Registry) becomes cluttered by installed ActiveX com-
ponents. Thus raises the question, how to remove unused ActiveX controls? It's not sufficient to
delete the OCX file. Instead you must uninstall the whole component, which means remove the
Registry entries. Before you start to do this job with the Registry Editor, use the program
RegSvr32.exe and enter the following command:

RegSvr32.exe /u C:\Samples\chapter02\BornTest\BornActive.ocx

The program locates the OCX file given in the path. The switch /u forces the program to remove
all entries for this ActiveX component from the Registry. Afterward you may delete safely the
OCX file without the risk that unused entries remains in your system.

TIP: If you import the REG file mentioned on the previous page, you can right-click on the
OCX file and use the shortcut command Unregister OCX, to unregister the OCX file.

Uninstalling an OCX ActiveX control which was installed from the browser

Did you install an ActiveX component using a browser and a web site? The sample file
ActiveX1.htm located in the folder \Samples\chapter02\BornTest does this with BornTest.ocx. In
this case the browser stores the OCX file under Windows 98 in the folder Temporary Internet files.
And the module is getting registered automatically. To uninstall an ActiveX module that is in-
stalled in this way you must process the following steps:

1. Launch the Internet Explorer and select Internet Options in the View menu (in Microsoft Inter-
net Explorer 5.0 you need to use the Tools menu).

2. Select the General property page on the Internet Options property sheet and click on the Set-
tings button (Figure 2.15, left).

3. The browser opens a second dialog box Settings. Click the View Objects button (Figure 2.15,
right).

4. The Downloaded Program Files folder windows, which contains all program files downloaded
and registered during an Internet session, is shown (Figure 2.16). Right-click the file, which
you intent to remove and select Remove in the shortcut menu.

36 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

Figure 2.15.
Internet Options

The browser shows a third dialog box, which you must confirm by clicking the Yes button. After-
wards Windows uninstalls this object (delete the file and remove all Registry entries).

Figure 2.16:
Folder Downloaded Program Files

The objects in the Downloaded Program Files folder may be ActiveX objects stored as OCX files
and other items like Java class modules stored in CAB archives. You may use the COM/OLE
Object Viewer after uninstalling to check whether the ActiveX entries are removed from the Reg-
istry.

Script debugging 37

© G. Born – Windows Scripting Host Tutorial

TIP: Some ActiveX objects come with its own install program. In this case you may use
the entry provided in the Install/Uninstall property page (use the Add/Remove Programs
icon in the control panel folder to invoke the property page).

Script debugging
A syntax error or a run-time error causes the WSH to terminate the script execution with the error
dialog shown in (Figure 2.17). The error dialog contains the path and the name of the script as
well as a note on the error category along with an error description. In most cases also the line
number and the column, in which the error appeared, is shown.

Figure 2.17.
Error dialog, which terminates a script's execution

Using one of the editors mentioned above may help to identify the line that causes the error. After
amending the source code, you can run the next test. If the script doesn't contains syntax errors
anymore, you may begin with debugging.

NOTE: For your own tests you will find the file ErrorTest.vbs in the folder
\Samples\chapter02 of the sample files. The VBScript program still contains a syntax error
that causes the error dialog shown in Figure 2.17. A string constant in line 15 isn't closed
with ".You must amend the source code to execute the script.

Trace your programs
After loading a WSH script faultlessly, you may start functional tests. Only in an ideal case the
script delivers the expected result. Sometimes it is helpful to place statements to show a message
box within the source code. Each time such a statement is executed, the message box will be dis-
played. Within the message box you can show interims results. This technology is shown in the
following Listing.

38 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

'**

' File: WSHDemo.vbs (WSH sample in VBScript)

' Author: (c) Günter Born

'

' Show the interims results within message boxes.

'**

' The following lines activates the trace messages.

' You must set the comment into the requested line.

' DebugFlag = false ' trace output off

 DebugFlag = true ' trace output on

 j = 0

 debug "Start", 0, 0

 For i = 1 to 10 ' loop 10 times

 debug "Step: ", i, j

 j = j + i ' Add all numbers

 Next

 debug "End", i, j

 WScript.Echo "Result: ", j

 WScript.Quit

Sub debug (text, count, val)

 If DebugFlag Then ' Debug mode active?

 WScript.Echo text, i , "Interims result: ", j

 End if

End sub

'* End

Listing 2.1:
Script with trace output

The program's function is quite trivial: The program uses a loop to calculate the sum of the num-
bers from 1 to 10. The results are shown subsequently using the Echo method.

For test purposes you would like to know however, when the program enters into the loop and how
many steps are executed within the loop. To trace these steps the Echo method can be called up in
the loop or at concerned places. To keep this sample as simple as possible, I have chosen here a
particular attempt. All trace messages were evaluated in an own procedure with the name debug.
Thus the program needs only the following statement:
debug "Start", 0, 0

to show the entry into the loop. The first parameter defines the text that is shown in the Message
box. The other parameters may contain numbers, which are also shown in the message box. In-
specting the listing above, you will find this statement in several places. Within the loop this
statement shows the index value and the calculated interims value (Figure 2.18).

Script debugging 39

© G. Born – Windows Scripting Host Tutorial

Figure 2.18.
Message box with trace values

Now I like to mention a particularity: As long as you test that program, the trace values should be
shown according to Figure 2.18. After the script is tested and runs faultlessly, these trace mes-
sages are no longer required. The trace statements may be removed from the source code. But, if
you change something later in the program, you need the trace statements again. This time con-
suming task is superfluous, because you can control the trace output using an option within the
debug procedure. This procedure contains a condition like:
If DebugFlag Then ' Debug mode activated?

Only if the value of the global variable DebugFlag is set to true, the Echo method is called and the
message box is shown. The variable DebugFlag is set in the script's header to the value true.
' DebugFlag = false ' trace output off

 DebugFlag = true ' trace output on

One of the two statements contains a comment. So you can set the value of this variable to true or
to false changing the comment sign from one line to the other. Depending on the value set for
DebugFlag the trace output is shown or suppressed.

NOTE: You will find the script WSHDemo.vbs (and WSHDemo.js) within the folder
\Samples\chapter02 of the sample files.

Using the Microsoft Script Debugger
The technique shown in the previous section may be applied only for simple scripts. This proce-
dure however isn't appropriate, if a script causes run-time errors or unexpected results. Here we
need a debugger to trace the program and its values. Microsoft offers the Microsoft Script Debug-
ger for free download within their website. This program was developed primarily to test scripts
within HTML documents or in Active Server of page (ASP files). However with some tricks the
debugger can also be used to test WSH scripts.

NOTE: You may download the Microsoft Script Debugger from Microsoft's web site
http://msdn.microsoft.com/scripting. The debugger will be installed in the folder
\Programs\Microsoft Script Debugger.

Testing scripts under the control of the Microsoft Script Debugger raise us to the question: How
can we execute the script under the control of the debugger? The script engines support under
WSH 1.0 some commands to invoke the Microsoft Script Debugger automatically.

♦ In VBScript you must insert the command stop within the source code.

♦ JScript requires the debugger statement to invoke the debugger.

Both commands stop the script execution and launch the Microsoft Script Debugger. Then the
debugger may overtake the control over script execution.

40 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

Note: In the WSH newsgroup I found some postings that in rare cases both statements won't work.
The reason is not clear. If this case happens, there is a third method to use the debugger. Just place
a statement like WScript.Echo "start debugger" into the script to invoke a dialog box. After invok-
ing the dialog box (Figure 2.19), the script execution pauses until the user closes the dialog.

Figure 2.19.
Dialog asking to start the debugger

You can use this pause to launch the debugger manually and take over the control: Select the
command Running Documents in the debugger's View menu and select the script's name in the
Running Documents window (Figure 2.20) to take over the control. Then click onto the button
Break at Next statement. Click the OK button to close the message box.

Figure 2.20.
Running Documents window

Note: The two sample files ErrorTest1.vbs and ErrorTest1.js in the folder
\Samples\chapter02 contain a statement to show a message box. The two sample files
ErrorTest2.js and ErrorTest2.vbs within the folder \Samples\chapter02 contain the stop and
debugger commands.

After the Microsoft Script Debugger has taken over the control to the script execution, the source
code is shown in a window (Figure 2.21).

Note

Script debugging 41

© G. Born – Windows Scripting Host Tutorial

Figure 2.21.
Microsoft Script Debugger window with a sample script

Comments will be shown in green color. But you should note that you can't edit the source code
within the debug window.

NOTE: Only if you load the source code into the debugger, you may edit the statements
within a separate window. The debug windows is indicated by the text »Read only« in
window's title bar.

Microsoft Script Debugger commands
The Microsoft Script Debugger contains several toolbars and a menu with commands to test the
script (Figure 2.22). Beside the Break at Next Statement command the debugger supports further
commands. These commands may be invoked using either the menu Debug or the buttons within
the Debug toolbar. Some commands may also be invoked by keystrokes:

♦ Run: Executes the script statements till a breakpoint is found or till the script terminates.

♦ Stop Debugging: Aborts the script execution and terminates debugging.

♦ Break at Next Statement: Click onto this button to ensure, that the script is not executed in a
piece. This is necessary, if you use method 1 mentioned above to invoke the debugger and
take control over script execution manually. In this case the debugger stops script execution
on the next statement, if the user closes the dialog or message box.

♦ Step Info: Select this command (within the Debug menu) or using the button in the toolbar or
pressing the key, to execute the next script statement.

♦ Step Over: This command may be invoked using the Debug menu, the button or the key com-
bination Shift+F8. This command causes the debugger to execute a whole procedure or func-

42 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

tion till program control returns to the calling module. If the current statement doesn't belongs
to a procedure/function, the debugger uses the Step Info mode.

Figure 2.22.
Debug window with a breakpoint

♦ Step Out: Executes all statements within a procedure/function till the command is found
which transfers the control to the caller.

♦ Toggle Breakpoints: Select an executable statement in the debug window and to set or clear a
breakpoint within this code line either by clicking this button, using the Debug menu or by
pressing the key. Lines with breakpoints are marked with a brown dot in the left border of the
debug window. If a breakpoint is reached during script execution, the debugger stops.

♦ Clear All Breakpoints: This command clears all breakpoints set within the script.

The button Command Windows opens a window which allows you to enter and execute commands
directly. The button Call Stack invokes a window showing the names of all active procedures on
the stack. The stack is empty, if your script uses only a linear program structure (without calling
procedures or functions).

Execute a script step-by-step?
During debugging a single step mode is rather helpful. Clicking onto the Step Info button or press-
ing the function key F8 executes the next statement in a script.

The next executable statement is market within the code windows with a yellow arrow on the left
border (Figure 2.22).

Command Window
Call Stack
Running Documents
Clear All Breakpoints
Toggle Breakpoint
Step Out
Step Over
Step Info
Break at Next Statement
Stop Debugging
Run

Next statement

Breakpoint

Script debugging 43

© G. Born – Windows Scripting Host Tutorial

Using the Step Over and Step Out mode
If your script contains already tested procedures and functions, a single step mode doesn't makes
sense to execute the statements within these procedures/functions. In this case you may use the
button Step Over or press the key combination Shift+F8. If the next executable statement contains
a procedure or function call, the whole procedure/function will be executed without any disruption.
The execution stops, after the control was returned from the procedure/function back to the caller.
If you use this command to execute other statements which doesn't call a procedure/function, it
works like the Step Info mode.

If the script execution terminates within a procedure or function, you may use the button Step Out
or the key combination Strg+Shift+F8 to execute all statements within the procedure/function. The
debugger takes over the control, if the return statement is reached.

Using breakpoints
To interrupt script execution on a certain statement, you may use breakpoints. Select the requested
statement within the debug window with a single mouse click. Then you set the breakpoint using
either the Toggle Breakpoint button or the key F9. This sets or clears a breakpoint within this
statement. If you run program again, the debugger stops the execution, if the line with the Break-
point is reached. Breakpoints are marked in the code window with a brown dot in the left border
(Figure 2.22).

Showing the Call Stack
Using the command Call Stack in the Debug menu or pressing the button in the toolbar open the
Call Stack window (Figure 2.23) This window contains a list of all active procedures/functions. In
the current sample the procedure debug is executed.

Figure 2.23.
Call Stack window

44 2 Development Tools

© G. Born – Windows Scripting Host Tutorial

Show interims values using the Command Window
If a program is interrupted, you can inspect the current value of a variable (or a property). Open
the command window. In VBScript you must type a question mark followed by a variable name to
show the associated value (Figure 2.24).

Figure 2.24.
Showing variable values within the command window

In JScript programs you must use a statement like WScript.Echo text to show a variable value. The
debugger executes the statement and shows a message box with the value of the variable text.

NOTE: If you would like to set the value of a variable, enter the statement to associate a
value to a variable into the command window:

Message = "Hello World"

You can use the command window also to try any program statement (we just have used
this with the WScript.Echo method).

The techniques mentioned above allow you to debug a WSH script written either in VBScript or in
JScript in a comfortable way. But the debugger doesn't reach in his functionality the comfort of-
fered in other Microsoft development environments. Consider also, that the Microsoft Script De-
bugger may not be used, if you have already installed Visual Interdev. This environment owns its
own debugger, which is called up at the appearance of an error in a HTML and/or ASP script
automatically.

TIP: If Visual Studio or Microsoft Office 2000 is installed on your machine, the Microsoft
Script Debugger won't work. If a debugger or stop statement is getting executed, of if a run-
time error occurs, a message box asking for debugging is shown. Clicking the Yes button
invokes the debugger of the Visual Studio Script Editor (which is also part of Microsoft
Office 2000). You can use this debugger in a similar way as the Microsoft Script Debugger.
The Script Editor supports a few additional debug commands. Details may be found in the
program help of the program.

	Development Tools
	A few tips to edit scripts
	How to create a script?
	Edit existing script files?
	Define your own Edit script command

	Script Editors
	EditPlus
	PrimalSCRIPT script editor
	Other editors

	The OLE/COM Object Viewer
	Using the Object Browser
	Installing/uninstalling ActiveX controls
	Uninstalling OCX files

	Script debugging
	Trace your programs
	Using the Microsoft Script Debugger
	Microsoft Script Debugger commands
	Execute a script step-by-step?
	Using the Step Over and Step Out mode
	Using breakpoints
	Showing the Call Stack
	Show interims values using the Command Window

