
 

© G. Born – Windows Scripting Host Tutorial 

4 Working with WSH objects 
In the preceding chapter I have discussed a few basics of script programming. We have also used a 
few objects, methods and properties. In this chapter I would like to extend your knowledge how to 
use the Windows Scripting Host, to automate certain tasks. Take a look how to read the properties 
of the WScript object and display them in a dialog box. This allows you to retrieve the most impor-
tant information from WSH and of the current script. Or access the environment variables of your 
operating system using a script. Another sample demonstrates how to access the arguments passed 
to a WSH script (a topic which we know from chapter 1). Accessing other objects requires creating 
these objects. Below I will discuss, how the methods CreateObject and GetObject are used with 
WScript objects. And I like to show how to launch an external application from a script using the 
Run method. 

NOTE: At this place I recommend download a copy of the WSH Programmers Reference 
from Microsoft's website http://msdn.microsoft.com/scripting. This reference comes handy 
for the upcoming chapters. 

Using the WScript object 
The WScript object is the application object of the Windows Script Host. This object is exposed 
automatically to the running script. So you need not to create a reference to the WScript object. 
The object exposes several methods and properties. In previous chapters we already have used the 
methods Echo and Quit of this object. Below I will show how you can access the object's proper-
ties. 

Displaying WSH and script properties 
In the previous chapter I mentioned that the Windows Script Host and the script currently running 
are available as the WScript object. If a script is execute in the Windows Command Prompt (the 
MS-DOS window) using Cscript.exe, the Host echoes the current version number within the 
command line. This version number is really interesting, since Microsoft just started to develop 
different versions of the WSH. Also properties like the path to the host program, the host's name 
and so one are surely informative in different cases. The table shown below contains a short over-
view about the properties exposed by the WScript object. 

Property Description 

Application Returns the IDispatch interface of the WScript object. 

Arguments Returns a collection object containing the script parame-
ters. 

FullName Contains the full path to the host executable (Cscript.exe or 
WScript.exe). 



60 4 Working with WSH objects 

© G. Born – Windows Scripting Host Tutorial 

Name The friendly name of WScript (this is the default property). 

Path The name of the directory where the host (Wscript.exe or 
Cscript.exe) resides. 

ScriptFullName This is the full path to the script that is currently run within 
the Windows Scripting Host. 

ScriptName This is the file name of the script that is currently run 
within the Windows Scripting Host. 

Version A string containing the version of the Windows Scripting 
Host (not the version of the language engine). 

Table 4.1. 
Properties of the WScript object 

NOTE: The WSH Programmers Reference (http://msdn.microsoft.com/scripting) contains 
further details about all WScript properties.  

The next sample script collects the host and the script properties. These results are shown in a 
dialog box (Figure 4.1).  

 

Figure 4.1. 
WScript host and script properties 

Retrieving the properties (only read access is allowed) of the WScript object is really simple. The 
WScript (application) object is exposed automatically from WSH to the script during script execu-
tion. Therefore the statement: 
Name = WScript.Application 

reads the Application property of the WScript object and assigns this value to the variable Name. If 
the script is executed under WSH, the variable shall contain the text »Windows Scripting Host«. 
Therefore you may use this property to check, whether the script is executed under WSH or not (a 
script could run for instance within the Internet Explorer, or as an external script of an Active 
Server Page (ASP) file). 



Displaying WSH and script properties 61 

© G. Born – Windows Scripting Host Tutorial 

NOTE: These properties are really helpful, if you need the name of a script or the path to 
the script file. Additional information about WScript properties may be found in the WSH 
Programmers Reference (http://msdn.microsoft.com/scripting). 

Retrieving properties in VBScript 
Listing 4.1 shows how you can retrieve the WScript properties using VBScript. You must specify 
the object name WScript, followed by a dot, followed by the property name. The result is assigned 
to a variable. In Listing 4.1 I have used the variable Message, to collect all properties in one 
string. The constant vbCrLf splits the output into several lines within the dialog box. I have used 
also the ScriptName property in this sample to show the script name within the title bar (variable 
Title) of the dialog box. 
'************************************************ 

' File:    Properties.vbs (WSH sample in VBScript)  

' Author:  (c) G. Born   

' 

' Shows the properties of the WScript object 

' within a dialog box. 

'************************************************ 

Option Explicit 

 

Dim Message 

Dim Title 

 

' Show the properties of the WScript object 

' we start with Host properties 

 

 Message = "WScript host properties" & vbCRLF & vbCRLF 

 Message = Message & "Application: " & WScript.Application & vbCRLF 

 Message = Message & "Name: " & WScript.Name & vbCRLF 

 Message = Message & "Version: " & WScript.Version & vbCRLF 

 Message = Message & "FullName: " & WScript.FullName & vbCRLF 

 Message = Message & "Path: " & WScript.Path & vbCRLF  

 

 ' Get the Interactive-Status 

 If (WScript.Interactive) Then 

   Message = Message & "Interactive: true" & vbCRLF  

 Else 

   Message = Message & "Interactive: false" & vbCRLF  

 End if 

 

' Get script properties 

 Message = Message & vbCRLF  

 Message = Message & "WScript script properties" & vbCRLF & vbCRLF 

 Message = Message & "ScriptFullName : " & WScript.ScriptFullName & vbCRLF 

 Message = Message & "ScriptName : " & WScript.ScriptName & vbCRLF 

 

' init title 



62 4 Working with WSH objects 

© G. Born – Windows Scripting Host Tutorial 

 Title = "WSH sample " & WScript.ScriptName & " - by G. Born" 

 

 MsgBox Message, vbInformation + vbOKOnly, Title 

 

 WScript.Quit()  ' terminate script  

 

'End 

Listing 4.1. 
Properties.vbs 

NOTE: The file Properties.vbs may be found within the folder \Samples\chapter04. 

Retrieving properties in JScript 
For all readers preferring JScript I have also implemented the sample in this language. The proper-
ties may be read also using the WScript object, followed by a dot and the property name. The in-
formation is collected into the variable Message. New lines within the output text are marked with 
the "\n" escape sequence. 
//************************************************ 

// File:     Properties.js (WSH sample in JScript)    

// Author:   (c) G. Born 

//  

// Show the properties of the WScript object 

// within a dialog box. 

//************************************************ 

// 

 

var Message, Title, tmp; 

var vbInformation = 64;    // a few constants 

var vbOKOnly = 0; 

 

// collect the properties of the WScript object 

// read the Host properties 

 

 Message = "WScript host properties \n\n"; 

 Message = Message + "Application: " + WScript.Application + "\n"; 

 Message = Message + "Name: " + WScript.Name + "\n"; 

 Message = Message + "Version: " + WScript.Version + "\n"; 

 Message = Message + "FullName: " + WScript.FullName + "\n"; 

 Message = Message + "Path: " + WScript.Path + "\n";  

 

// get Interactive-status 

 if (WScript.Interactive)  

  Message = Message + "Interactive: true" + "\n"  

 else 

   Message = Message + "Interactive: false" + "\n"; 

 

// get the script properties 

G Born




Retrieving the script engine's properties 63 

© G. Born – Windows Scripting Host Tutorial 

 Message = Message + "\n";  

 Message = Message + "WScript script properties \n\n"; 

 Message = Message + "ScriptFullName : " + WScript.ScriptFullName + "\n"; 

 Message = Message + "ScriptName : " + WScript.ScriptName + "\n"; 

 

// init title 

 Title = "WSH sample  " + WScript.ScriptName + " - by G. Born"; 

 

 var objAdr = WScript.CreateObject("WScript.Shell"); 

 

 tmp = objAdr.Popup (Message, vbInformation + vbOKOnly, Title); 

 

 WScript.Quit() ; // terminate 

 

// End 

Listing 4.2. 
Properties.js 

NOTE: The file Properties.js is located in the folder \Samples\chapter04. Here I like to 
give also a 2nd remark. Did you noticed that the + operator is required in JScript to 
concatenate strings? In VBScript you can use also the + operator to concatenate sub strings. 
But this may cause trouble, because + stands for addition. Adding two strings is done as a 
concatenation operation. To create more transparent VBScript programs you should use 
however the & operator. Within this book you will find both operators, because I have 
ported some JScript scripts to VBScript. 

Retrieving the script engine's properties 
In the previous section I have discussed how to retrieve the host and the script properties. Beside 
these information however the properties of the language engines are requested in several cases. 
For instance, you may request the version number from the interpreter. This is helpful, because 
Microsoft has released several versions of the language engines. These engines depend on the 
libraries installed for the Internet Explorer. Microsoft Internet Explorer 4.0 provides version 3.x 
languages engines. Visual Studio updates these language engines to version 4.0, and Microsoft 
Internet Explorer 5.0 installs the version 5.0 of the language engines. And you can download ver-
sion 5.0 of the language engines from msdn.microsoft.com/scripting. VBScript as well as JScript 
provide a few functions to check the version of a language engine: 

♦ ScriptEngine(): This function delivers a string defining the script language supported by the 
engine. 

♦ ScriptEngineMajorVersion(): The function returns the major version of the language engine 
as a string (3 for instance). 

♦ ScriptEngineMinorVersion(): Returns the minor version number of the language engine as a 
string. 

♦ ScriptEngineBuildVersion(): This function returns the Build number of a script engine. 

G Born




64 4 Working with WSH objects 

© G. Born – Windows Scripting Host Tutorial 

 

Figure 4.2. 
Script Engine properties 

The next listing demonstrates how to use these functions in VBScript to query the properties of the 
language engine and displays it in a dialog box (Figure 4.2). 
'************************************************ 

' File:    Engine.vbs (WSH sample in VBScript)  

' Author:  Günter Born 

' 

' Display the version of the language engine. 

'************************************************ 

Option Explicit 

 

DIM txt 

 

' get the version of the language engine 

 

txt = "Script-Engine: " & CStr(ScriptEngine()) & vbCRLF 

txt = txt & "Version: " & CStr(ScriptEngineMajorVersion())  

txt = txt & "." + CStr(ScriptEngineMinorVersion()) + vbCRLF 

txt = txt & "Build: " & CStr(ScriptEngineBuildVersion()) 

 

WScript.Echo txt 

 

WScript.Quit() 

 

' End 

Listing 4.3. 
Engine.vbs 

NOTE: The file Engine.vbs is located in the folder \Samples\chapter04.  

If you prefer JScript, you need to use the following listing to retrieve the properties of the language 
engine. 
//************************************************ 

// File:    Engine.js (WSH sample in JScript)  

// Author:  Günter Born 

// 

// Shows the version of the script engine. 

//************************************************ 

//  

G Born




Accessing script arguments 65 

© G. Born – Windows Scripting Host Tutorial 

 

var txt = "Script-Engine: " + ScriptEngine() + "\n" + 

           "Version: " + ScriptEngineMajorVersion() + 

           "." + ScriptEngineMinorVersion() + "\n" + 

           "Build: " + ScriptEngineBuildVersion(); 

 

WScript.Echo (txt); 

 

WScript.Quit(); 

 

// End 

Listing 4.4. 
Engine.vbs 

NOTE: The file Engine.js is located in the folder \Samples\chapter04.  

Accessing script arguments 
In chapter 1 I have discussed the techniques to submit parameters, also called arguments (for in-
stance a filename or a switch), to a script. Within the script you need a technique to access these 
arguments. I have used the script in chapter 1 to display submitted parameters without explaining 
the details of the implementation. Now its time to have a look into the script. WSH provides the 
WshArguments object which may be used to handle the script parameters (arguments). The table 
shown below describes the properties associated with the WshArguments object. 

Property Description 

Item Default property, which defines the nth parameter in the com-
mand-line, used to call the script. 

Count Returns the number of command-line parameters (arguments). 

length This returns also the number of parameters and is used for 
JScript compatibility. 

Table 4.2. 
Properties of the WSHArguments object 

How can we access these properties? Unfortunately the WshArguments object is not exposed di-
rectly. Instead we must use the Arguments property of the WScript object to access the script ar-
guments. But it isn't trivial, because a simple assignment like: 
Parameter = WScript.Arguments 

causes not only a run-time error, it comes with a second difficulty. A script may receive more than 
one parameter, but the assignment statement shown above assigns only a single value to the vari-
able. 

At this point the object model comes handy. The Arguments property returns a collection object 
that is the WshAguments object we requested. Therefore you can use some code to access the indi-

G Born




66 4 Working with WSH objects 

© G. Born – Windows Scripting Host Tutorial 

vidual objects of this collection. There are several steps required to access the script parameters. 
These steps are shown below for VBScript. The statement:  
Set objArgs = Wscript.Arguments 

assigns the Arguments property of the WScript object to the object variable objArgs. We need the 
Set keyword, because the property is a collection object, so objArgs must be an object variable. 
You may use objArgs to access the objects and their properties of this collection. The first object 
of the collection may be accessed using the following statement: 
param1 = objArgs(0) 

In this case the variable param1 receives the content of the default property of the object ob-
jArgs(0). This is a new technique, because we have used the object name, a dot and the property 
name to retrieve a property. The argument strings are located in the Item property, therefore the 
statement may be written also as: 
param1 = objArgs.Item(0) 

Because Item is defined as the default property we can use also the short version of the command 
param1 = objArgs(0). Both statements returns the script parameter stored in the Item property as a 
string into the variable param1. 

Indeed there is still a further difficulty: How do we get the number of submitted arguments con-
tained in the collection? If the script is executed without any parameter, the collection within the 
Arguments property is empty. The attempt to access the object variable objArgs(0) causes a run-
time error in this case. According to Table 4.2 the WshArguments object obtained for the Argu-
ments property exposed also the Count property. This property may be used to check the number 
of items in the collection, which corresponds to the number of script arguments. Therefore you 
may use the following code to access the first script argument: 
If objArgs.Count >=1 Then ' is there at least one argument 

 Param1 = objArgs.Item(0) 

End if 

Accessing more than one or two parameters becomes a little bit too laborious with the code shown 
above. To access all script arguments, you should use a loop instead. The following VBScript code 
sequence shows how to get all arguments into a text variable. 
For I = 0 to objArgs.Count - 1     ' all arguments 

 text = text + objArgs(I) + vbCRLF ' get argument 

Next 

The number of items within the collection may be obtained with objArgs.Count. Then a simple 
For loop may be used to process all items. Accessing an item may be done with objArgs(i), be-
cause objArgs.Item(i) is the default property. 

Two solutions in VBScript 
The code shown in Listing 4.6 reflects my explanations given above. If parameters are submitted 
to the script, these parameters are shown in a dialog box that lists each argument found in a sepa-
rate line (Figure 4.3). 



Accessing script arguments 67 

© G. Born – Windows Scripting Host Tutorial 

 

Figure 4.3. 
Displaying script arguments 

This script retrieves the number of items within the Arguments collection. Then a simple For loop 
is used to access each entry within the collection. 
'************************************************ 

' File:    Param.vbs (WSH sample in VBScript)  

' Author:  (c) G. Born   

' 

' Showing the parameters passed to the script 

' within a dialog box. 

'************************************************ 

 

 text = "Arguments" + vbCRLF +vbCRLF 

 

 Set objArgs = Wscript.Arguments    ' create object 

 For I = 0 to objArgs.Count - 1     ' all arguments 

  text = text + objArgs(I) + vbCRLF ' get argument 

 Next  

 

 Wscript.Echo text ' show arguments using Echo 

 

 WScript.Quit()    ' terminate script 

 

' End 

Listing 4.5. 
Param.vbs 

NOTE: Submitting the parameters to the script may be done within a shortcut file or using 
the Run dialog box (or the Windows Command Prompt – see also in chapter 1). The file 
Param.vbs is located in the folder \Samples\chapter04. The shortcut file Param_vbs.lnk in 
the same folder defines a command line to call the script with predefined parameters.  

The sequence shown above was used for demonstration purposes. In VBScript you have an alter-
ative to evaluate submitted parameters within the loop. You can use a For Each In loop to enu-
merate all entries within a collection (or within an array). In this case counting the elements within 
the collection is up to VBScript. Let's assume we retrieve the Arguments object with the parameter 
collection using the following statement: 

G Born




68 4 Working with WSH objects 

© G. Born – Windows Scripting Host Tutorial 

Set objArgs = Wscript.Arguments    ' create object 

Then we can use the following sequence: 
For Each i in objArgs      ' all arguments 

  text = text & i & vbCRLF ' get argument 

Next 

The For Each i in objArgs statement is used to process each item within the collection. The loop 
index i contains the current object. Therefore you may use the variable i to read the script parame-
ter. The assignment: 
Param1 = i 

assigns the argument to the variable Param1. The next listing shows the implementation of the 
VBScript script using a For Each loop. 
'************************************************ 

' File:    Param1.vbs (WSH sample in VBScript)  

' Author:  (c) G. Born   

' 

' Show the parameter passed to the script within 

' a dialog box. 

'************************************************ 

Option Explicit 

 

Dim text, i, objArgs 

 

 text = "Arguments" + vbCRLF +vbCRLF 

 

 Set objArgs = Wscript.Arguments    ' create object 

 For Each i in objArgs     ' all arguments 

  text = text + i + vbCRLF ' get argument 

 Next  

 

  Wscript.Echo text ' show arguments using Echo 

   

 WScript.Quit()     ' terminate script 

 

' End 

Listing 4.6. 
Param.vbs 

NOTE: Which of the two solutions you use depends on your personal flavor. The file 
Param1.vbs is located in the folder \Samples\chapter04. The shortcut file Param1_vbs.lnk 
in the same folder defines a command line to call the script with predefined parameters. 

A solution in JScript 
In JScript you may access also parameters using the WScript.Arguments property. The syntax of 
this language causes a few slight differences within the code. Accessing the Arguments property 
doesn't requires the Set keyword. JScript creates automatically the sub-data type for the requested 
value. Therefore we may use the following statement to get the Arguments collection: 

G Born




Accessing environment variables 69 

© G. Born – Windows Scripting Host Tutorial 

var objArgs = WScript.Arguments;       // create object 

This statement creates a variable and assigns the object reference. After getting the collection into 
the object variable, we can access the items. This may be done within the following code se-
quence: 
for (var i=0; i < objArgs.length; i++) // all arguments 

  text = text + objArgs(i) + '\n';     // get argument 

Here we assign the content of the Item property (this is the default property of an object) of the 
current item into the variable text (see also my explanations on the previous pages). You should 
note that you must use the length property to estimate the number of items within the collection. 
This property is provided for compatibility purposes, because the Count property causes a run-time 
error in JScript. Listing 4.7 shows the whole script. If you execute this script with parameters, 
these parameters are shown in a dialog box similar to Figure 4.3. 
//************************************************ 

// File:    Param.js (WSH sample in JScript)  

// Author:  (c) G. Born   

// 

// Show script parameters in a dialog box. 

//************************************************ 

 

 var objArgs; 

 var text = "Arguments \n"; 

 

 var objArgs = WScript.Arguments;       // create object 

 

 for (var i=0; i < objArgs.length; i++) // all arguments 

  text = text + objArgs(i) + '\n';      // get argument 

  

  WScript.Echo (text);  // show arguments per Echo 

  WScript.Quit() ;      // terminate script 

 

// End 

Listing 4.7. 
Param.js 

NOTE: The file Param.js is located in the folder \Samples\chapter04. The shortcut file 
Param_js.lnk in the same folder defines a command line to call the script with predefined 
parameters. 

Accessing environment variables 
Windows 95/98 as well as Windows NT 4.0 and/or Windows 2000 stores several information 
within environment variables. The following section discusses how you can access these environ-
ment variables from VBScript or JScript.  

G Born


G Born
The next part is removed from the WSH Tutorial Lite!



86 4 Working with WSH objects 

© G. Born – Windows Scripting Host Tutorial 

 

DIM WshShell, tmp 

 

Set WshShell = Wscript.CreateObject ("WScript.Shell") 

 

 tmp = WshShell.Popup ("Test", 0, "WSH-Test by Günter Born") 

 

WScript.DisconnectObject WshShell 

Set WshShell = Nothing 

 

WScript.Quit () 

 

' End 

Listing 4.13. 
Disconnect.vbs 

NOTE: The file Disconnect.vbs is located within the folder \Samples\chapter04. 

Execute other programs from scripts 
This sections discusses how you can use the Run method to execute commands and other pro-
grams from a script. 

Remarks about the Run method 
To launch an other application from a WSH script you must use the Run method provided by the 
Shell object. The Run method creates a new process, and executes the command contained in the 
strCommand parameter. A second parameter intWindowStyle may specify the window style. The 
method used the following syntax: 
WshShell.Run (strCommand [, [intWindowStype] [,bWaitOnReturn]])  

The parameter strCommand is required, because it contains the path and the name of the applica-
tion or the command to be executed. I should note also, that the Run method expands environment 
variable names contained in the parameter strCommand automatically. The sequence: 
Set WshShell = WScript.Shell ("WScript.Shell") 

Command = "%WinDir%\Calc.exe" 

WshShell.Run (Command) 

causes the script to expand the environment variable %WinDir% contained in Command and 
launches the Windows program calc.exe. The other two optional parameters control how the appli-
cation window must be shown and whether the script should wait till the executed process termi-
nates.  

intWindowStype is an optional parameter specifying the window style of the new process. The 
argument is of type Variant and may contain an integer between 0 and n. If the parameter intWin-
dowStype is omitted, the window gets the focus and will be shown in normal mode.  

G Born


G Born


G Born


G Born




Execute other programs from scripts 87 

© G. Born – Windows Scripting Host Tutorial 

NOTE: Unfortunately Microsoft's WSH Programmers Reference doesn't contain a 
description of the possible window styles. In a first step I did used the parameters defined 
for the VBA Shell command. The vb constants shown in Table 4.5 are obtained from the 
VBA help files. Later on I detected, that a Microsoft Website contains a document with a 
description of the Run method. This document says that the parameter sets the 
wShowWindow element within the STARTUPINFO structure of the new process. Therefore 
the values are the same as for the parameter nCmdShow of the ShowWindow function. 
Based on this information, I have created Table 4.5 with the values for the parameter 
intWindowStype. The column constant contains two names. The names with the prefix vb 
was obtained from the VBA help, whilst the values with the prefix wm belongs to the 
STARTUPINFO structure. But I should mention, that none of these named constants are 
defined under VBScript.  

Constant Value Description 

vbHide 
SW_HIDE 

0 Hides the window, another window 
is activated (activate = is shown and 
get the focus). 

vbNormalFocus 
SW_SHOWNORMAL 

1 Activates the windows and shows it. 
If the process is already active and 
the window is mini-
mized/maximized, the previous size 
and position will be restored. 

vbMinimizedFocus 
SW_SHOWMINIMIZED 

2 The window is activated. It is get-
ting minimized and the button 
within the taskbar receives the fo-
cus. 

vbMaximizedFocus 
SW_SHOWMAXIMIZED 

3 The windows will be activated. It is 
maximized and receives the focus. 

vbNormalNoFocus 
SW_SHOWNOACTIVATE 

4 Displays a window in its most re-
cent size and position. The active 
window remains active. 

SW_SHOW 5 Activates the window in its current 
size and position. 

vbMinimizedNoFocus 
SW_MINIMIZE 

6 Minimizes the specified window 
and activates the next top-level 
window in the Z order. 

SW_SHOWMINNOACTIVE 7 Displays the window as an icon 
(minimized), the active window 
remains active. 

SW_SHOWNA 8 Displays the window in its current 
state, the active window remains 
active.  

SW_RESTORE 9 Activates and displays the window. 
If a window is minimized or maxi-
mized, Windows restores the origi-



88 4 Working with WSH objects 

© G. Born – Windows Scripting Host Tutorial 

nal size and position. An application 
should specify this flag when restor-
ing a minimized window (can't be 
used with Run). 

Table 4.5. 
Values for intWindowsType 

NOTE: The values for the windows style in Table 4.5 suggest, that the Run method you 
can both call up an instance of an application as well as switch an already running 
application in the foreground. Unfortunately there is a (small) problem at the Run method: 
This method creates always a new instance of the process. It isn't possible to re-activate a 
window of a running application or minimize/maximize it. The consequence: You can't use 
all values shown in the table above. At tests I found also, that the window style works only 
with applications supporting those styles. The Windows Editor accept the styles, whilst the 
calculator causes trouble (because the window can't be maximized). In chapter 8I discuss an 
ActiveX control which implements an object supporting a method to switch a background 
windows into the foreground. 

The optional Run parameter bWaitOnReturn owns the sub-type Logical (it may contain the values 
true and false). The parameter controls whether the script wait on the termination of the executed 
process. If bWaitOnReturn is missing or set to false, the Run method executes the command and 
returns, if the command is send to the message loop. The next script statements can be processed. 
If bWaitOnReturn is set to true, the Run method creates a new process, executes the command and 
waits till the process terminates. In this case the Run method returns the error code obtained from 
the terminated process. If bWaitOnReturn is missing or set to false, Run returns the error code 0 
(zero).  

NOTE: The error code may be set within a script using the Quit method (see below). 

Launch the Windows Editor from VBScript  
Let's create a few small scripts. The Windows Editor window supports the window styles shown in 
Table 4.5. The script shown below demonstrates how to launch the Editor Notepad.exe from 
VBScript. The path to the Windows folder will be obtained from the environment variable %Win-
Dir%. Therefore this script is independent from the Windows install location. In a second step the 
script launches the Editor again. Within this step the Editor window is minimized (to a button in 
the taskbar). And the editor should load the source code of the script currently executed.  
'************************************************ 

' File:    Run.vbs (WSH sample in VBScript)  

' Author:  Günter Born 

' 

' Calls the Windows-Editor using the Run method. 

'************************************************ 

' 

DIM WshShell 

 

Set WshShell = WScript.CreateObject ("WScript.Shell") 

 

WshShell.Run "%Windir%\Notepad.exe", 1 

 



Execute other programs from scripts 89 

© G. Born – Windows Scripting Host Tutorial 

WScript.Echo "Load source code in a minimized edit window" 

 

WshShell.Run "%Windir%\Notepad.exe " + WScript.ScriptFullName, 6 

 

WScript.Quit()  ' terminate script 

 

' End 

Listing 4.14. 
Run.vbs 

NOTE: The file Run.vbs is located in the folder \Samples\chapter04. 

How to call the Windows calculator from JScript? 
This sample uses JScript to launch the Windows program calc.exe. The path to the Windows 
folder is obtained from the environment variable %WinDir%. The script is independent from the 
location of the Windows folder. The script need some named constants, which I have declared as 
variables within the program's header. But note that the Windows calculator doesn't support all 
window styles. Therefore the style to minimize the window is ignored. If you port a VBScript 
sample to JScript, you must not only take care to the different syntax rule. Keep also in mind that 
the parameters for the Run method must be set into parenthesis. Also you have to use the \\ code 
within paths to separate folder names, because JScript interprets the \ as an escape sequence (see 
the JScript language reference provided from Microsoft). Further details may be found in the list-
ing shown below. 
//************************************************ 

// File:    Run.js (WSH sample in JScript)    

// Author:  Günter Born 

//  

// Launches the Windows-calculator using 

// Run. Attention: The Run method doesn't 

// supports all window styles! 

//************************************************ 

 

var SW_SHOWNORMAL = 1; 

var SW_MINIMIZE = 6; 

 

var WshShell = WScript.CreateObject ("WScript.Shell"); 

 

// First try 

WshShell.Run ("%Windir%\\Calc.exe", SW_SHOWNORMAL); 

 

WScript.Echo ("Launching calc minimized"); 

 

// Should not work !!! 

WshShell.Run ("%Windir%\\Calc.exe", SW_MINIMIZE); 

 

 WScript.Quit() ; // terminate script 

 



90 4 Working with WSH objects 

© G. Born – Windows Scripting Host Tutorial 

// End 

Listing 4.15. 
Run.js 

NOTE: The program Run.js is located in the folder \Samples\chapter04. 

A few remarks about the Quit method 
Within the previous sections I have already used the Quit method without further explanations at 
the scripts end. This method terminates the object (this means: This method is used to terminate 
the script). Within a script you may call this method using the following statement: 
WScript.Quit(); 

in JScript or: 
WScript.Quit 

in VBScript. First comes the object name, on which the method must be applied. The statements 
shown above uses the WScript object, which is exposed automatically by WSH. The object name 
is followed by a dot, followed by the name of the method Quit. Quit accepts an optional parameter, 
which must be set in a parenthesis following the method's name. The sample used above doesn't 
pass parameters to the Quit method, the parenthesis in the JScript statement remains empty. 

NOTE: The parameter used in the Quit method defines the Process-Exit-Code. If no value 
is passed, the Windows Scripting Host returns the value 0 to the operating system. 
Alternatively you may insert an integer value (0 or 1 for instance) as a parameter. This code 
indicates to the operating system whether the process terminates with an error. The value 0 
indicates that the process terminates in a regular manner. Omitting the parameter means the 
code is also 0. All positive values, which are above 0, indicates an error that causes the 
process termination. Windows doesn't check this code, but you can check the termination 
code for instance, using the host Cscript.exe to execute the script in the Command Prompt 
window (MS-DOS window). The error code may be checked using the ERRORLEVEL 
function within a batch program. 

It is not mandatory to insert the command. If the language engine reach the last line within 
a script, the process terminates automatically. But you may use the Quit method to 
terminate a script on a defined point. 

Wait for process termination and check exit codes 
The next sample discuss how to launch an external application and wait till the process terminates. 
And we use the explanation given in the previous paragraphs to check the return code. If the proc-
ess returns an error code during termination, this Process Exit Code shall be examined by the par-
ent script (the code shall be shown in a dialog box). To simulate a second process, we execute the 
following short VBScript program. This program uses the Echo method to show a dialog box. 
After the user clicks the OK button the script terminates. So you can check whether the parent 
script waits to the termination of the child process. The script Test.vbs returns the error code 2 
using the Quit method. The Quit method supports error codes between 0 and 255. Listing 4.16 
contains the statements for Test.vbs. 
'************************************************ 

' File:    Test.vbs (WSH sample in VBScript)  

G Born
Removed the  last part of the text.


	Working with WSH objects
	Using the WScript object
	Displaying WSH and script properties
	Retrieving properties in VBScript
	Retrieving properties in JScript

	Retrieving the script engine's properties
	Accessing script arguments
	Two solutions in VBScript
	A solution in JScript

	Accessing environment variables
	Global remarks
	How to access environment variables per script?
	Using environment variables in VBScript
	How to read environment variables in JScript
	How to set environment variables
	Deleting environment variables
	Expanding environment variables

	Get and release objects
	Create objects
	CreateObject or GetObject?
	Using DisconnectObject

	Execute other programs from scripts
	Remarks about the Run method
	Launch the Windows Editor from VBScript
	How to call the Windows calculator from JScript?
	A few remarks about the Quit method
	Wait for process termination and check exit codes
	Using Run to execute MS-DOS commands



