

© G. Born – Windows Scripting Host Tutorial

12 How to...?
This chapter contains answers to questions »How to...« and additional information for developing
scripts. Use this chapter as a guide, if you need some information about how to solve special ques-
tions.

Programming tricks
Below you will find a collection of programming tricks and techniques (some already mentioned
in other chapters), which deals with WSH script programming in general.

How to debug?
To check a variable's value, you can use the Echo method within your script. Add the statement
shown below in VBScript:
WScript.Echo "Variable xyz: ", xyz

In JScript the arguments must be enclosed in parenthesis and separated with commas:
WScript.Echo ("Variable xyz: ", xyz);

If you like to know whether a special branch within the script is executed, you may add also an
Echo call into the code, indicating that the inspected program point is reached.

To test the program step by step, I recommend the Microsoft Script Debugger (or the Microsoft
Script Editor's debugging features in the case Visual Studio or Microsoft Office 2000 is installed).
Inset the commands stop (VBScript) or debugger into the script's source code to launch the debug-
ger automatically.

NOTE: Some people reported problems with these keywords. In this case add a simple
Echo call and launch your debugger manually. A more detailed description of these topics
may be found in chapter 2.

At the time I wrote this chapter I got the information, that WSH 2.0 supports a flag to
enable debugging. WSH 2.0 supports XML format within script files, and there is an option
to suppress debugging.

Also the PrimalSCRIPT script editor I mentioned in chapter 2 probably supports in version
2.x a kind of »in-place« debugging. You can execute a compile/syntax check within the
editor window and launch also an external debugger.

How to handle Run-time errors?
VBScript supports run-time Error handling with the statement.
On Error Resume Next

428 12 How to...?

© G. Born – Windows Scripting Host Tutorial

The statement causes after a run-time error that the next statement will be executed. The error code
can be retrieved from the Err object.
valx = WSH.RegRead ("....", "xxxx")

If Err <> 0 Then

....

After a run-time error occurs, the value of the Err object is not equal 0. The error code may be
retrieved from the Number property (Err.Number). I have used this technique within several chap-
ters to handle run-time errors.

Use the statement:
On Error GoTo 0

to disable run-time error handling within the script. After this statement, run-time errors are han-
dled by WSH.

TIP: The error numbers returned from Err.Number are described in the VBScript/JScript
help (msdn.microsoft.com/scripting). But these help files cover only language errors. Error
numbers caused from the operating system are not described. Brad Martinez wrote a neat
program Win32 Error Codes which displays an error text after entering the error code into a
dialog box window. The module may be downloaded from
http://members.aol.com/btmtz/vb.

JScript run-time error handling
In JScript run-time error handling is supported since the script-engine version 5.0 using the try
{....} catch (e) {....} sequence:
try

{

var valx = WSH.RegRead ("....", "xxxx");

}

catch(e)

{

 if (e != 0)

 WScript.Echo ("Error during Registry access");

}

The try keyword must be set in front of a statement. Enclose the statement or a block of statements
in brackets {...}. The catch(e) statement is called, if a run-time error occurs. The variable e re-
ceives the error object. This error object can be evaluated in the statements following in the catch
block, which must be enclosed also in brackets {...}.

NOTE: Further information about error handling may be found in previous chapters of this
book and in the VBScript/JScript help files (msdn.microsoft.com/scripting).

JScript (language engine 3.x) doesn't supports try ... catch error handling. There is a free
ActiveX control called ScriptX to make JScript more close to VBScript. For instance
ScriptX allows you to call a method of any object and analyze the success/failure code.
Parameters are packed into a JScript array (args) and passed by reference. The return values
are passed back as args.value. So, two goals are achieved: ByRef semantic and error
handling. Below is a small sample that calls obj.Method(a, b, c):

function CallAX(obj, a, b, c)

Programming tricks 429

© G. Born – Windows Scripting Host Tutorial

{ // pack params to array

args = new Array(a, b, c);

// same as: args.value = obj.Method(a, b, c)

error = factory.js.InvokeByRefResult(obj, "Method", args);

if (error != 0)

 { alert("AX Error: " + error); }

else

 {

// 'return_value + a + b + c' on output.

 alert(args.value + args[0] + args[1] + args[2])

 }

}

This control supports also a couple of other neat operation. The specs for ScriptX may be found at
http://www.meadroid.com/scriptx/ScriptXspec.htm. The control itself can be downloaded from
http://www.meadroid.com/scriptx/.

How use WSH- and Script-Engine properties?
WSH properties may be accessed using the WScript object. Below are VBScript statements to
query some properties:
WScript.Echo "Application: " & WScript.Application

WScript.Echo "Name: " & WScript.Name

WScript.Echo "Version: " & WScript.Version

WScript.Echo "FullName: " & WScript.FullName

WScript.Echo "Path: " & WScript.Path

To check the Script-Engine properties, use the following code:
WScript.Echo "Script-Engine: ", ScriptEngine()

WScript.Echo "Version: ", ScriptEngineMajorVersion(), ".", _

 ScriptEngineMinorVersion()

WScript.Echo "Build: ", ScriptEngineBuildVersion()

Further details may be found in chapter 4 in the section »Working with the WScript object«.

How to get the script's path?
Sometimes it comes in handy to know the path to your script. For instance, if you like to load a
document file, store the file into the folder of your script and try to get the path. This is much more
flexible as working with absolute paths. WSH owns no function or method to retrieve the path.
Therefore many programmers created their own solutions to get the script path from the Script-
FullName property of the WScript object. I have used the following VBScript code within my
samples:
Function GetPath

' Retrieve path to the script file

 DIM path

 path = WScript.ScriptFullName ' script file name

 GetPath = Left(path, InstrRev(path, "\"))

End Function

430 12 How to...?

© G. Born – Windows Scripting Host Tutorial

In JScript you may use the following function to retrieve the path:
function GetPath ()

// Retrieve the script path

{

 var path = WScript.ScriptFullName; // script name

 path = path.substr(0,path.lastIndexOf("\\")+1);

 return path;

}

Both functions depends on the fact that a path must end with a backslash "\". If WSH becomes
available on other machines (like Macintosh or Unix), this method fails. Then the following con-
struction may be applied to retrieve the path:
path = Left(Wscript.ScriptFullName, _

 Len(Wscript.ScriptFullName) - Len(Wscript.ScriptName))

This statement cuts the script file name from the full name by a simple »subtraction«. So it will be
independent on the file naming convention. If you like to avoid this trick, you can let the FileSys-
temObject do the job for you. This object provides a method to retrieve the parent folder of a given
path. Use the following statements to retrieve the path:
Dim fso

Set fso = CreateObject("Scripting.FileSystemObject")

Path = fso.GetParentFolderName(Wscript.ScriptFullName)

The advantage of this construction is: as long as Microsoft implements the GetParentFolderName
in a right order, you will get the path (independent of the operating system). The penalty you have
to pay: You create a file system object (which costs extra memory) and execute a method (which
costs extra time).

How to get the current directory?
Some programmers ask for code to retrieve the current directory (such a function is available in
VBA). The current directory within a script is identical to the directory from which the script is
executed. So you can use either the code shown in the previous section or the following state-
ments:
Dim fso

set fso = WScript.CreateObject("Scripting.FileSystemObject")

' CurrentDir = fso.GetAbsolutePathName("") ' or use the following syntax

CurrentDir = fso.GetAbsolutePathName(".")

This sequence uses the FileSystemObject to retrieve the path using the GetAbsolutePathName
method with the parameter ".". This will be demonstrated in the following VBScript listing, which
shows the current directory and the script path in a message box.
'**

' File: CurrentDir.vbs (WSH sample in VBScript)

' Author: G. Born

'

' Retrieves the current directory

'**

Option Explicit

Programming tricks 431

© G. Born – Windows Scripting Host Tutorial

WScript.Echo "Script Path:", GetPath(), vbCRLF, _

 "Current Directory:", CurrentDir()

Function CurrentDir

Dim fso

 set fso = WScript.CreateObject("Scripting.FileSystemObject")

 CurrentDir = fso.GetAbsolutePathName(".")

End Function

Function GetPath

' Retrieve path to the script file

 DIM path

 path = WScript.ScriptFullName ' script file name

 GetPath = Left(path, InstrRev(path, "\"))

End Function

' End

Listing 12.1.
CurrentDir.vbs

NOTE: The file CurrentDir.vbs is located in the folder \Samples\chapter12.

How to calculate Date differences
Would you calculate date differences? This can be done in VBScript using the DateDiff function.
According to the VBScript help you must specify the interval in the first parameter, the other two
parameters are the dates to be used to calculate the difference.
WScript.Echo DateDiff("d", Now, "1.1.2000") & _

 " days left to the millennium big bang..."

The statement above uses the "d" (days) interval to calculate the days left to the year 2000.

NOTE: Take care that the date separator depends on the locale settings of your operating
system.

How to use Event handling?
The Windows Script Host provides a feature to handle external events of automation objects. A
script can call a method of an object or access its properties, and the object can call back an event
handling procedure implemented within the script. To enable this call back feature, you must link
the script's event handler to the outgoing interface of the external automation object. This need to
be done when instantiating the object with the CreateObject method. This method supports an
optional parameter in which a prefix of the names of all event procedures may be passed. The
following statement uses the prefix Window_ for the event handler procedure and links it to the
Internet Explorer Application object:
Set oIE4 = WScript.CreateObject("InternetExplorer.Application", "Window_")

This means: All event handlers within the script must begin with the name Window_. Within a
VBScript program we can use for instance the following procedure to catch an OnUnload event:
Sub Window_OnUnload()

432 12 How to...?

© G. Born – Windows Scripting Host Tutorial

' is raised on closing of the document

End Sub

The procedure name consists of the prefix (which we have already defined within the CreateOb-
ject method), an underscore and the name of the event (here I have used OnUnload()). It is re-
quired that the external object can raise such an event (if the event handler shall make sense).

Implement an event handler in VBScript
Let's have a real world example. The following little script demonstrates how to handle external
events in VBScript. It uses a procedure to handle external events. The script launches the Internet
Explorer and load the file TextForm.htm located in the script file's folder (Figure 12.1).

Figure 12.1.
A document shown in Microsoft Internet Explorer and some dialogs caused by the WSH script

After the script forces Internet Explorer to load the HTML document, several events are fired
within this application. The events DownloadBegin and DownloadComplete will be raised twice
for begin and end of the download. If you close the Internet Explorer window, an OnQuit event
occurs. Dialog boxes created within the WSH script show all these events. These dialogs are
shown before the Internet Explorers window becomes visible. The MsgBox call at the script's end
forces the WSH script to stop. Although the script itself waits for closing the dialog box, all events
are indicated by dialog boxes (created from the event handlers within the script - see Figure 12.1).
Details may be obtained from the following code listing.

NOTE: It will be no problem, if the script terminates before the Internet Explorer is
quitted. All events raised from the Internet Explorer are send to WSH, which passes these
events to the script. If the script or an event handling procedure doesn't exists, WSH detects

Programming tricks 433

© G. Born – Windows Scripting Host Tutorial

this and the event isn't processed. So you don't have to worry about a kind of
»disconnecting« the event handling function from your object.

'**

' File: IEEventHandling.vbs (WSH sample in VBScript)

' Author: (c) G. Born

'

' Demonstrates how to use an event handling to

' handle IE events within a script.

'**

Option Explicit

Dim WSHShell ' declare variables

Dim oIE4

Dim path

Dim Title, Title1

Title = "WSH sample CallBack-Test - by G. Born"

Title1 = "IE4 event detected - by G. Born"

' *** get path to the script file, because the Form

' *** (HTML) must be located in this folder

path = GetPath() + "TestForm.htm" ' File's path

' *** launch Internet Explorer, define CallBack-Prefix ***

Set oIE4 = WScript.CreateObject(_

 "InternetExplorer.Application", "Window_")

 oIE4.navigate path ' Form

 oIE4.visible = 1 ' visible

' Stop script by displaying a message box. The dialogs from

' the event procedures should work, even if the script waits

' to close the message box.

 MsgBox "Wait ..." + vbCRLF + _

 "Please terminate now the Internet Explorer" + _

 vbCRLF, vbOkOnly + vbInformation, Title

' User clicked the OK button

WScript.Quit() ' terminate

'***

' Here are the event handlers

'***

Sub Window_DownloadBegin()

' raised from loading a document in IE

 MsgBox "Download begins", _

 vbOkOnly + vbInformation, Title1

End Sub

Sub Window_DownloadComplete()

434 12 How to...?

© G. Born – Windows Scripting Host Tutorial

' raised from ending the download in IE

 MsgBox "Download finished", _

 vbOkOnly + vbInformation, Title1

End Sub

Sub Window_OnUnload()

' raised from closing a document in IE

 MsgBox "Close document", _

 vbOkOnly + vbInformation, Title1

End Sub

Sub Window_OnQuit()

' raised from quitting IE

 MsgBox "Quit Internet Explorer", _

 vbOkOnly + vbInformation, Title1

End Sub

'##########################

Function GetPath

' Retrieve path to the script file

 DIM path

 path = WScript.ScriptFullName ' script file name

 GetPath = Left(path, InstrRev(path, "\"))

End Function

' End

Listing 12.2.
IEEventHandler.vbs

NOTE: The program IEEventHandler.vbs is located in the folder \Samples\chapter12.
This folder contains also the required HTML file TestForm.htm. Another sample how to
use an event handler may be found also in chapter 6 within the section »Forms input with a
CallBack function«.

How it work's in JScript?
In JScript you may use the same technique to implement a callback function for an event handler.
You must only take care about the JScript syntax. The following listing shows the details of the
JScript implementation of the previous VBScript sample. You should note that not all the events
implemented within the script must be raised from the Internet Explorer. For instance, I haven't
seen the OnUnload event during executing the sample. Details may be found within the listing.
//**

// File: IEEventHandling.js (WSH sample in JScript)

// Author: (c) G. Born

//

// Demonstrates how to use event handling to

// handle IE events within a script.

//**

Programming tricks 435

© G. Born – Windows Scripting Host Tutorial

var path = GetPath() + "TestForm.htm"; // file must exists

// *** launch Internet Explorer, define CallBack-Prefix ***

var oIE4 = WScript.CreateObject(

 "InternetExplorer.Application", "Window_");

 oIE4.navigate (path); // Form

 oIE4.visible = 1; // visible

// Stop script by displaying a message box. The dialogs from

// the event procedures should work, even if the script waits

// to close the message box.

 WScript.Echo ("Wait ...\n",

 "Please terminate now the Internet Explorer");

// User clicked the OK button

 WScript.Quit(); // ready

//***

// Here are the event handlers

//***

function Window_DownloadBegin()

// raised from loading a document in IE

{

 WScript.Echo ("IE event detected: Download begin");

}

function Window_DownloadComplete()

// raised from ending the download in IE

{

 WScript.Echo ("IE event detected: Download end");

}

function Window_OnUnload()

// raised from closing a document in IE

{

 WScript.Echo ("IE event detected: Document close");

}

function Window_OnQuit()

// raised from quitting IE

{

 WScript.Echo ("IE event detected: Quit IE4");

}

//##########################

function GetPath ()

// Retrieve the script path

{

 var path = WScript.ScriptFullName; // script name

 path = path.substr(0,path.lastIndexOf("\\")+1);

436 12 How to...?

© G. Born – Windows Scripting Host Tutorial

 return path;

}

// End

Listing 12.3.
IEEventHandling.js

NOTE: The sample IEEventHandling.js is located in the folder \Samples\chapter12.

Script calls and parameters
This section contains a few remarks about frequently asked questions concerning how to execute a
script from a script, pass arguments to the script and launch other programs.

How to launch a script using Drag & Drop?
It would be supremely welcome, if a script could be launched using Drag & Drop, this means for
instance: simply drag a document file over the script file's icon. As soon as you drop the docu-
ment, the script is launched and processes the document file as an argument. Unfortunately this
does not work, because the Windows Shell does not accept VBS- and JS-files as feasible programs.
You must use a trick and fake an executable script: create a simple batch program that calls itself
the WSH script. A BAT file can be used within Drag & Drop operations. Let's have a closer look
at this technique. Assume we have for instance the script Param.vbs in the folder
E:\Samples\chapter12, which shall support Drag & Drop. Therefore create a BAT-file within the
same folder containing the following command:
@Start WScript.exe E:\Samples\chapter12\Param.vbs %1 %2 %3

This command passes the parameters submitted to the BAT file as arguments to the script. Here I
have used only three parameters, but you may insert the placeholder %1, %2 up to %9 into the
command line, to submit nine parameters. Additional you can set the properties for this Batch
program, to execute the MS-DOS window minimized and close the window automatically after the
program terminates (right-click the BAT file and select Properties in the shortcut menu). The
script mentioned above shows the parameters submitted from the BAT file.

Figure 12.2.
Parameters submitted by Drag & Drop

If you drag for instance the file TestForm.htm over the batch program Param.bat, and drop the
file, then the BAT file launches the WSH-Host and passes the script file name and the first three

Script calls and parameters 437

© G. Born – Windows Scripting Host Tutorial

parameters to this application. The program Param.vbs examines the submitted parameters and
shows them in a dialog box. And these parameters are nothing else as the names of the files
dragged to the bat file. In Figure 12.2 we can see two file names, because I dragged two files to
the bat file.

NOTE: The files Param.bat, Param.pif and Param.vbs are located in the folder
\Samples\chapter12. Before you can test this example, you must copy the files into a folder,
and edit the command in the bat file, to customize the path to your script file.

WSH scripts and the Windows NT-Scheduler
You may use the Windows NT scheduler to execute a script at a given time:
AT 18:00:00 /interactive "C:\Samples\chapter12\RunExit.vbs"

Within the AT command line you must write the whole path to the script file. And you must set
the /interactive flag, if the script requests some user interaction.

How to access script arguments?
I have mentioned the bat file trick to launch a WSH script per Drag & Drop. The script can access
the submitted parameters using the Arguments property of the WScript object. This property re-
turns a collection with all submitted arguments:
Set objArgs = WScript.Arguments ' create object

 For I = 0 to objArgs.Count - 1 ' all arguments

 text = text & objArgs(I) & vbCrLf ' fetch argument

 Next

You may further samples for VBScript and JScript in chapter 4 within the section »Examining
script parameters«.

How to call external applications?
To execute external applications you must use the Run method of the WSHShell object.
Set WSHShell = WScript.CreateObject ("WScript.Shell")

WSHShell.Run "%Windir%\Notepad.exe", 1

The first parameter submitted to the Run method defines the path with the executable program.
The second parameter defines the window style. To execute a MS-DOS command, you need to use
the following commands:
var WSHShell = WScript.CreateObject ("WScript.Shell");

WSHShell.Run ("%windir%\\%comspec% /k dir C:\\");

I have used in this case the environment variable %comspec% instead of command.com because
%comspec% translates to cmd.exe in Windows NT and command.com in Windows 9x. This com-
mand written in JScript shows the content of your drive C:\ using the MS-DOS DIR command.

If the script shall wait till the launched process terminates, you must submit the value true within
the third parameter:
Set WSHShell = WScript.CreateObject ("WScript.Shell")

438 12 How to...?

© G. Born – Windows Scripting Host Tutorial

WSHShell.Run "%Windir%\Notepad.exe", 1, true

If you launch the Windows-Explorers with this command, the wait mode fails. You may test this
behavior with the file RunWait.vbs contained in the folder \Samples\chapter12. Edit the script and
exchange the Excel call with a Explorer.exe call. This behavior may be explained, because the
Explorer is a part of the Windows Shell and therefore always active. Launching Explorer.exe won't
create a new process, instead a new thread is executed. Therefore the wait mode must fail!

Long file names within scripts
If your scripts contain long file names, or if you use long file names within the command to exe-
cute the script, you must enclose the paths in double-quotes:
WSHShell.Run """C:\Programs\Microsoft Office\Office\Excel.exe""", 1, -1

A double-quote contained in a string must be written in VBScript as """. The first double-quote
indicates the begin of the string. The two following double-quote characters "" are signaling the
double-quote which must be inserted into the string. In JScript a double-quote within a string must
be written as "\":
WSHShell.Run _
 "\"C:\\Programs\\Microsoft Office\\Office\\Excel.exe\"", 1, -1

NOTE: When you build the command line by fetching a path name and then concatenating
a string with the specific file name, you need to add double quotes around the resulting
string (because the fetched path name may have an embedded space).

How to execute system calls using Run?
To call the Windows API from your WSH script, you need an ActiveX control (I have introduced
this technique in chapter 12). But Windows 9x provides a few backdoors and helpers allowing you
to access system routines from a script using the Run method.

Shutdown with RunDLL32.exe
In chapter 10 I have introduced an ActiveX control, which provides the WSHExitWindows method
to shutdown, restart or logoff Windows 95/98. But you don't need this component to shutdown
your Windows 95/98 from a WSH script. You may use the following command within the Run
method to initiate a shutdown.
WSHShell.Run "%windir%\RunDll32.exe user,ExitWindows", 1, -1

The program RunDll32.exe is a helper to activate several Windows functions contained in (DLL)
library files. The command given above RunDll32 accesses the library User.exe and calls the
ExitWindows API function, which is exported from this module.

TIP: You may use all DLL Libraries available under Windows within a RunDLL32.exe
command. But there are restrictions: the names of the functions exported from the library
are case sensitive (exitwindows is different from ExitWindows). And you can't pass
arguments to a function using RundDll32.exe. The only option you have is to submit a
string within the command-line. If the library examines the command-line, the option will
be detected. But this is only true in rare cases.

	How to...?
	Programming tricks
	How to debug?
	How to handle Run-time errors?
	JScript run-time error handling
	How use WSH- and Script-Engine properties?
	How to get the script's path?
	How to get the current directory?
	How to calculate Date differences
	How to use Event handling?
	Implement an event handler in VBScript
	How it work's in JScript?

	Script calls and parameters
	How to launch a script using Drag & Drop?
	WSH scripts and the Windows NT-Scheduler
	How to access script arguments?
	How to call external applications?
	Long file names within scripts

	How to execute system calls using Run?
	Shutdown with RunDLL32.exe
	Backdoors to shutdown/restart Windows 9X
	How to invoke the CopyDisc dialog?
	How to invoke the Format dialog?
	How to invoke the Open With dialog?
	How to invoke the Screen Saver property page?

	Network mappings with Run
	User dialogs and output
	How to implement user dialogs in scripts?

	How to use tabs and line feeds?
	How to get a user input within scripts?
	How to use console input/output?
	How to log script output?
	A UserLog sample in VBScript

	File handling
	How to check whether a file/folder exists?
	How to check whether an Access Database is in use?
	How to copy files
	How to search a file?
	How to list all shortcut files?

	Sound and Multimedia
	Using the WSHPlaySound method
	Using the WSHMciExecute method
	How to play sound with the MCI control?
	How to play Multimedia files

	Accessing the Windows shell
	How to arrange desktop windows?
	How to open folder windows?
	How to access Windows Shell-dialogs?
	How to use a user defined file dialog?
	Remarks about implementing the ActiveX control

	Miscellaneous
	How to call a DUN connection
	How to obtain the IP-address?
	How to retrieve system information?

	How to use ADSI?
	How to bind to a directory service?
	ADSI: How to create an User?
	ADSI: How to change passwords?
	ADSI: How to change a User's Description?
	ADSI: How to delete a User from a machine or a domain?
	ADSI: How to disable an User's account?
	ADSI: How to add a User to a Group?
	ADSI: How to display all users of a group?

	ADSI: How to display Groups?
	Accessing Data with ADO
	Create your DB Provider
	A sample to read a CSV file

