

© G. Born – Windows Scripting Host Tutorial

5 User Input in scripts
In the chapter 3 have introduced a few techniques to create simple user dialogs. Now I like to
discuss how to implement simple dialogs allowing a user input within WSH scripts.

User input in VBScript
VBScript supports the InputBox function to retrieve user input. The function uses the following
syntax:
result = InputBox (prompt[,[title] ,[default] ,[xpos] ,[ypos]])

The function call opens a dialog box window with a user-defined message, a title text and a simple
input box (Figure 5.1). The user may enter something into the textbox and he/she may click onto
the buttons.

Figure 5.1.
User dialog using the InputBox function

The InputBox function uses the following :

♦ prompt: This parameter is mandatory. It defines the message, which is shown in the dialog
box window. In Figure 5.1 this is the text »Input«.

♦ title: Defines the optional title text for the dialog box window.

♦ default: Specifies the default value, which shall be shown within the text box after invoking
the input dialog. This parameter is optional.

♦ xpos and ypos: Define the position of the upper left corner of the dialog box window. This
parameter is optional.

If one of the optional parameters is missing, VBScript uses default values within the dialog box
window. To omit an optional parameter between other parameter, you must set a comma (like
InputBox ("Hello", "Test",,100,200)). The function doesn't supports a buttons parameter
(like MsgBox).

96 5 User Input in scripts

© G. Born – Windows Scripting Host Tutorial

As soon as the user closes the input dialog, the InputBox function returns a value. This value de-
pends on the button that was used to close the dialog. The OK button returns the content of the
input box (the user input). If the user aborts the dialog choosing the Cancel button (see Figure
5.1), an empty string "" is returned. This can be used to check whether the user input is valid or
not. The following code sequence checks the return value result and uses an if statement to show
the result.
If result = "" Then ' Test for Cancel

 WScript.Echo "Canceled"

Else

 WScript.Echo "You entered: " & result

End If

The VBScript program shown below uses this technique. The script displays first an input box
dialog window containing a text box with the default value (Figure 5.1). A user can change this
input value. After closing the dialog box, the script displays either the result or a cancelled mes-
sage within a second dialog box window (Figure 5.2).

Figure 5.2.
Display the user input retrieved from InputBox

The text shown in the dialog box is declared within the script's header in global variables. This
keeps the function call as simply as possible. I have used also the VBScript constant vbCrLf to
split the output string into two lines. Details about using the InputBox function are shown in
Listing 5.1.
'**

' File: Input.vbs (WSH sample in VBScript)

' Author: Günter Born

'

' The script implements a user input.

'**

Option Explicit

Dim Message, result

Dim Title, Text1, Text2

' define dialog box variables

Message = "Input"

Title = "WSH sample user input - by G. Born"

Text1 = "User input cancelled"

Text2 = "You entered:" + vbCRLF

' Ready to use the InputBox function

User input in JScript 97

© G. Born – Windows Scripting Host Tutorial

' InputBox (prompt, title, default, xpos, ypos)

' prompt: The text shown in the dialog window

' title: the title of the dialog window

' default: Default value shown in the input box

' xpos/xpos: position upper left of dialog box window

' If a parameter is omitted, VBScript used defaults

result = InputBox(Message,Title,"Born", 100, 100)

' Evaluate the user input

If result = "" Then ' Canceled by the user

 WScript.Echo Text1

Else

 WScript.Echo Text2 + result

End If

WScript.Quit() ' Ready

' End

Listing 5.1.
Input.vbs

NOTE: The VBScript sample Input.vbs is located in the folder \Samples\chapter05.

User input in JScript
Creating a user input dialog box in JScript is a huge problem. The language doesn't support the
VBScript Inputbox function already introduced in the previous section. Also a command like:
var txt = window.prompt("WSH sample ","Name: ");

which may be used within a HTML script, won't work in WSH scripts. And the WSH doesn't pro-
vide a method for user input. To overcome this situation, I have developed a few solutions.

JScript-user input using a second script
VBScript supports the InputBox function, it would be an idea to call this function from a JScript
script. Unfortunately you can't append a VBScript procedure to a JScript script (in WSH 1.0).
Within one script file, you must use one language (because WSH 1.0 uses the file name extension
to select the language engine).

The only solution is: create two scripts, the JScript script and a (helper) VBScript script. The
VBScript script handles the user input. The Run method introduced in the previous chapter allows
you to launch the VBScript script from a JScript script. But we have to solve a problem: How to
transfer the input value from the child script to the parent script? Using the code returned from the
Quit method restricts you to numerical values (0, 1, 2 and so on). This can't be used to return a
string.

NOTE: We could use a file to exchange a string, or we could use Registry entries to
exchange data. The best solution would be to use an environment variable to return the

98 5 User Input in scripts

© G. Born – Windows Scripting Host Tutorial

value. As you have seen in the previous chapter, environment variables are local to a
process. So it is not possible to share a variable between two processes. And environment
variables are not permanent, if they are created within a script. If the script terminates, the
environment variable is getting lost – so exchanging a value between two scripts using an
environment variable might be failed. Surprisingly there is an exception: If a script calls a
second script using the Run method, this child script may create a new environment
variable. And this variable may be read from the parent script. So you can create an
environment variable in the child process, which remains valid if this script, terminates.
This environment variable may be read within the parent script. I was not able to access an
environment variable created from the parent script within the child script. But this isn't a
major problem, because you can submit parameters from the parent to the child using the
Run method.

I have used this trick to implement a simple user input dialog within JScript. The following code
sequence allows to read the environment variable within the parent script.
WSHShell = WScript.CreateObject("WScript.Shell");

var wshEnv = WSHShell.Environment("Volatile"); // get the environment variable

// Get user input from environment variable "Result"

var test = wshEnv("Result");

In the second line the Environment collection is assigned to the wshEnv variable (we use the Vola-
tile section of the environment). Then the variable's value is read back, using the object wshEnv.
To execute the child script with the user input dialog, the following commands may be used:
// get the path to the script file VBInput.vbs

var path = WScript.ScriptFullName;

path = path.substr(0,path.lastIndexOf("\\")+1);

path = path + "\VBInput.vbs";

// execute VBScript program

WSHShell.Run ("WScript.exe "+ path,1, true);

The last line calls the child script. The first parameter may be used also to submit parameters from
the parent script to the child. Because the third parameter of the Run method is set to true, the
parent script waits till the child process terminates. Then the code snippet shown in the previous
section is used to fetch the user input from the environment variable. The following Listing con-
tains the implementation of the JScript parent script.
//**

// File: Input0.js (WSH sample in JScript)

// Author: (c) G. Born

//

// Demonstrates a trick to get user input in JScript.

// We call a VBScript program to get the user input.

// The input is stored into an environment variable.

// The variable created in the VBScript child remains

// valid during the parent process life time, if the

// child is created with the Run method!!!

//**

var WSHShell;

// create Shell object

WSHShell = WScript.CreateObject("WScript.Shell");

User input in JScript 99

© G. Born – Windows Scripting Host Tutorial

// object to access environment (collection object)

var wshEnv = WSHShell.Environment("Volatile");

// get the path to the script file VBInput.vbs

var path = WScript.ScriptFullName;

path = path.substr(0,path.lastIndexOf("\\")+1);

path = path + "\VBInput.vbs";

// execute VBScript program

WSHShell.Run ("WScript.exe "+ path,1, true);

// Get user input from environment variable "Result"

var test = wshEnv("Result");

WScript.Echo ("You entered: ", test);

WScript.Quit(); // close WScript object

// End

Listing 5.2.
Input0.js

Now we still need the child script that contains the implementation of the input box dialog and
which stores the user input into the environment. This may be done with VBScript using the fol-
lowing statements.
'**

' File: VBInput.vbs (WSH sample in VBScript)

' Author: (c) G. Born

'

' Shows an input dialog and stores the user input

' into the environment variable Result.

'**

Option Explicit

Dim Message, result, WshEnv, WSHShell

Dim Title, Text1, Text2

' Objects to access the environment variables

Set WshShell = Wscript.CreateObject("WScript.Shell")

Set WshEnv = WshShell.Environment ("Volatile")

' set dialog texts

Message = "Input"

Title = "WSH by Günter Born"

' Using the InputBox-Function

result = InputBox(Message,Title,"")

100 5 User Input in scripts

© G. Born – Windows Scripting Host Tutorial

' Store user input into environment

wshEnv ("Result") = result

WScript.Quit() ' ready

' End

Listing 5.3.
VBInput.vbs

Executing the parent script causes that an input box dialog is shown from the child script. If the
user dialog is closed, the result obtained from the child process is displayed within a second dialog
box window. You may find the parent script Input0.js and the child script VBInput.vbs within the
folder \Samples\chapter05.

Internet Explorer for JScript user input
The trick I have shown in the preceding section is based on the attempt that the behavior of the
environment remains in further WSH versions. Therefore I have implemented a second solution,
which enables you to invoke an input dialog from JScript. I use also VBScript to create the Input
box dialog (as you can see in the dialog's title bar shown in Figure 5.3).

Figure 5.3.
Dialog for user input in JScript

The question is: How can we access a VBScript script without calling it using the Run method
shown in the previous section. The idea is: Insert the VBScript script into a document, which can
be loaded by an application, which supports VBScript. Besides Microsoft Office application the
Microsoft Internet Explorer is also such a program – and all machines supporting WSH must have
this browser installed. If the script is already loaded within an application, I can use the applica-
tion's object model to access also the functions of the script. How this works will be discussed in
detail below.

NOTE: The technique I describe below is a bit complicated. And I will show later a much
more simple solution using an ActiveX control. Although I decided to let the sample in this
chapter, because the technique may be the base for using the Internet Explorer for form
input (I will discuss this in further chapters).

Internet Explorer for JScript user input 101

© G. Born – Windows Scripting Host Tutorial

Implementing an InputBox function in HTML
A HTML document may contain scripts, which can be embedded using the <SCRIPT>-Tag.
Therefore we can store a script written in VBScript within a HTML document. The HTML source
code for such a HTML document is shown below:
<HTML>

<HEAD>

<Script LANGUAGE="VBScript">

<!--

Function InputBox1 (prompt,title, value)

 InputBox1 = InputBox (prompt, title, value)

End Function

//-->

</Script>

</HEAD>

<BODY></BODY>

</HTML>

Listing 5.4.
HTML source code of an document containing a VBScript script

The script just contains the InputBox1 function, which calls itself the InputBox function provided
in the VBScript syntax. The InputBox1 call just passes its parameters to the InputBox function.
Also the returned value from InputBox is passed to the calling module. So we may see the Input-
Box1 function as a shell for the InputBox call.

NOTE: If you load the HTML file within a browser, just an empty document will be
shown. This is intended, because we need only the InputBox1, to show the input dialog.

Call the function within the HTML document
Let's assume you have deposited the function discussed in the previous section into a HTML
document. How can we access this function from a WSH script either written in JScript or in
VBScript? At this point I can say already, that there are no differences between JScript and
VBScript. Solely the differences in the syntax must be considered.

To use the Internet Explorer and its objects from a WSH script, you must obtain a reference to the
Internet Explorer Application object. You may use the following statement in JScript to create the
object:
var oIE = WScript.CreateObject("InternetExplorer.Application");

The object variable oIE may be used afterward to access the properties and methods supported by
the Application object of the Internet Explorer. In the next step we must advice the Internet Ex-
plorer to load the requested document containing the HTML code with the script. If this file is
located in C:\input.htm you may use the navigate property as shown below:
oIE.navigate ("c:\input.htm");

Set the visible property to 0 disables the browser window (we just need the dialog box). But this
property is set by default to 0, so you can omit this statement.

102 5 User Input in scripts

© G. Born – Windows Scripting Host Tutorial

Did you launched the Internet Explorer, loaded the HTML document containing the script and link
the object to the WSH? Then you have to call the InputBox1 function located in the Internet Ex-
plorer's document object from your WSH script. If we solve this question, we could use the Inter-
net Explorer as an Extender for JScript.

Figure 5.4.
Internet Explorer 4.01 object model

The Internet Explorer's object model shown in Figure 5.4 allow us the navigation within the object
hierarchy. As far as you specify the Type-Library »Internet Explorer« with the class »Application«
within the CreateObject method, this method returns the Internet Explorer Application object. This
object may contain the document loaded in the browser. And a Document object may contain be-
side the HTML tags also a script. The script will be exposed from the Document object that is a
container for the Script object. To access a script function embedded in the HTML document, you
must use the following statement:
var oIEscr = oIE.Document.Script;

The object variable oIEscr is created from the object hierarchy, because oIE points to the Internet
Explorer Application object. Using this new object variable allows a direct access to all script
functions embedded within the HTML document. The statement shown below accesses the Input-
Box1 function in the document loaded in the Internet Explorer.
var result = oIEscr.InputBox1(prompt,title,x);

From the view of a script programmer this looks like using a method. And that's the point: Input-
Box1 is nothing else then a method of the Script object.

The InputBox implementation for JScript
I would like to discuss now how the dialog box shown in Figure 5.3 is implemented in a JScript
program. And I like to introduce a few new techniques, which allow you to feed the statements for
the script directly from the WSH script into the Internet Explorer's document window. Using this
technique you need not to load an HTML document file into the browser. To keep the handling as
simple as possible, I have implemented a function within the JScript script that may be called
using the code:
var mobj = makeInputBox ();// launch IE and create the InputBox1 method

var result = InputBox (mobj, prompt,title,"Born"); // get user input

The function makeInputBox() handles the task to load the HTML document with the helper script
into the Internet Explorer. This function returns an object reference to the script object, which
exposes the properties and methods. Using this object variable allows you to call the InputBox
method from Jscript as shown above. The parameter mobj must contain the object variable re-

Internet Explorer for JScript user input 103

© G. Born – Windows Scripting Host Tutorial

turned from makeInputBox. InputBox is implemented as a function in JScript using the following
structure:
function InputBox (obj, prompt, title, x)

 {

// Interface to the InputBox1 function in the Document.Script object

 var oIEdoc = obj.Document.Script;

 var result = oIEdoc.InputBox1(prompt,title,x);

 return result;

 }

Listing 5.5.
InputBox function

The parameter obj contains the object reference (here the reference to the Internet Explorer's Ap-
plication object returned from makeInputBox). Now we need an object reference, to call the Input-
Box1 method within the HTML document from JScript for opening the input dialog. This refer-
ence may be obtained (according to the Internet Explorer's object model) within JScript using the
following statement:
var oIEdoc = obj.Document.Script;

Then the following simple statement may be used to call the InputBox1 function within the HTML
document:
var result = oIEdoc.InputBox1(prompt,title,x);

To keep handling as simple as possible, I have moved all the code into a JScript function InputBox
of the WSH script. Therefore you may interpret all functions as black boxes, which are handling
all necessary things in the background. The script programmer just has to call the two functions
makeInputBox () and InputBox(). That's all!

Let's come back to the content of the makeInputBox() function. We need a solution to launch the
Internet Explorer and to load a document including the script. Feeding the script's code into the
Internet Explorer document may be done with the following code, encapsulated in the makeInput-
Box function.
function makeInputBox ()

 {

// create Internet Browser object

 var oIE = WScript.CreateObject("InternetExplorer.Application");

 oIE.navigate ("about:blank"); // load empty document

 oIE.visible = 0; // keep MSIE invisible

 while (oIE.Busy) {} // Important: idle loop, wait till MSIE is ready

 var doc1 = oIE.Document; // fetch the current (empty) document object

 doc1.open; // open document

 // write script code into document

 doc1.writeln ("<HTML><HEAD>");

 doc1.writeln ("<Script LANGUAGE=\"VBScript\"><!--");

 doc1.writeln ("Function InputBox1 (prompt,title, value)");

 doc1.writeln (" InputBox1 = InputBox (prompt, title, value)");

 doc1.writeln ("End Function");

 doc1.writeln ("//-->");

104 5 User Input in scripts

© G. Born – Windows Scripting Host Tutorial

 doc1.writeln ("</Script>");

 doc1.writeln ("</HEAD><BODY></BODY></HTML>");

 doc1.close; // close document for write access

 return oIE;

 }

After executing the function, the Microsoft Internet Explorer is launched, a new document win-
dows is opened and this document contains the script code. It looks a little bit complicated, isn't it?
Here are a few additional explanations. The first statement creates the Internet Explorer applica-
tion object:
var oIE = WScript.CreateObject("InternetExplorer.Application");

If the browser is installed and registered (which is true under Windows 98), the CreateObject
method returns the object reference into the object variable oIE. With a few statements you can set
the properties of the new object (here the Internet Explorer window, which presents the applica-
tion). Most of the properties provided by the browser doesn't interest in this example (since the
Browser window is hidden). The statement:
oIE.visible = 0;

assures that the Browser window keeps hidden. This isn't required at all, because this property is
set by default to 0. Important is the line to load the document:
oIE.navigate ("about:blank");

In normal cases the navigate property keeps the path to a HTML document file or URL address.
This file will be loaded and displayed in the document window. But: The document must be
loaded using an absolute URL/path, the path must be present, and it must contain the requested
content. Therefore I decided to load an empty document and add the requested content. The state-
ment above creates a blank document. Adding the content may be done with the following se-
quence:
var doc1 = oIE.Document; // get Document object

 doc1.open; // open document

 // write script into document

 doc1.writeln ("<HTML><HEAD>");

 doc1.writeln ("<Script LANGUAGE=\"VBScript\"><!--");

 doc1.writeln ("Function InputBox1 (prompt,title, value)");

 doc1.writeln (" InputBox1 = InputBox (prompt, title, value)");

 doc1.writeln ("End Function");

 doc1.writeln ("//-->");

 doc1.writeln ("</Script>");

 doc1.writeln ("</HEAD><BODY></BODY></HTML>");

 doc1.close; // close document for write access

The first statement gets the reference to the document object. The next line opens the document for
write access. Subsequent statements use the writeln method to write into the document. The
writeln sequence creates a HTML structure that contains a <SCRIPT> tag to embed VBScript
script. The script contains a function InputBox1, which calls itself the VBScript function InputBox.
After feeding the HTML tags containing the script statements into the document, the WSH closes
the (virtual) document for write access and return the reference to the object variable (the docu-
ment).

NOTE: I have used above the <Script> tag to enclose the code. This is not necessary, if
you trust that the browser understand also the pure script code.

Internet Explorer for JScript user input 105

© G. Born – Windows Scripting Host Tutorial

If you have a reference to the object, you may access the InputBox1 function from the WSH script.
The Internet Explorer executes the script within the document, and an input dialog box is shown
(Figure 5.3).

IMPORTANT: If you need the InputBox1 method no more, you must terminate the
Internet Explorer (otherwise the application remains in the memory). You may apply the
Quit method on the Internet Explorers application object (this object supports this method).

Now we have all tools to use an input box function within any WSH script. All we need are two
function calls. The following listing shows the whole program structure.
//**

// File: Input1.js (WSH sample in JScript)

// Author: Günter Born

// Check out the WSH Bazaar at:

// ourworld.compuserve.com/homepages/Guenter_Born

//

// Demonstrates how to realize a user input in JScript.

// The script uses the Internet Explorer !!!

//

//**

var title = "Born's InputBox function for JScript"

var prompt = "Name:"

var WSHShell;

var vbOKCancel = 1; // auxillary variable

var vbOKOnly = 0

var vbInformation = 64;

var vbCancel = 2;

// helper function -> creates an InputBox function

// in the Internet Explorer

function makeInputBox ()

 {

// create Internet Browser application object

 var oIE4 = WScript.CreateObject("InternetExplorer.Application");

 oIE4.navigate ("about:blank"); // empty HTML document

 oIE4.visible = 0; // keep MSIE invisible

 while (oIE4.Busy) {} // Important: Wait till MSIE ready

 var doc1 = oIE4.Document; // get document object

 doc1.open; // open document

 // write script into the document object

 doc1.writeln ("<HTML><HEAD>");

 doc1.writeln ("<Script LANGUAGE=\"VBScript\"><!--");

 doc1.writeln ("Function InputBox1 (prompt,title, value)");

 doc1.writeln (" InputBox1 = InputBox (prompt, title, value)");

 doc1.writeln ("End Function");

 doc1.writeln ("//-->");

 doc1.writeln ("</Script>");

106 5 User Input in scripts

© G. Born – Windows Scripting Host Tutorial

 doc1.writeln ("</HEAD><BODY></BODY></HTML>");

 doc1.close; // close document for write access

 return oIE4;

 }

function InputBox (obj, prompt, title, x)

 {

// Interface for the InputBox1 function in the document object

// of the MS IE 4/5

 var oIE4doc = obj.Document.Script;

 var result = oIE4doc.InputBox1(prompt,title,x);

 return result;

 }

//+++++++++++++++++++++++

// main module

//+++++++++++++++++++++++

{

// Create our Shell object (is needed to use Popup).

WSHShell = WScript.CreateObject("WScript.Shell");

// launch IE 4.0/5.0, create InputBox method

var mobj = makeInputBox ();

// Get user input using the InputBox method

var result = InputBox (mobj, prompt,title,"Born");

WSHShell.Popup("You entered: " + result,

 0,

 "Result",

 vbOKOnly + vbInformation);

 // 2nd test

result = InputBox (mobj, prompt,title,"James Brown");

WSHShell.Popup("You entered: " + result,

 0,

 "Result",

 vbOKOnly + vbInformation);

mobj.Quit(); // close Explorer object

WScript.Quit(); // Ready, close WScript object

}

// End

Listing 5.6.
Input1.js

An InputBox ActiveX control 107

© G. Born – Windows Scripting Host Tutorial

NOTE: The JScript sample Input1.js is located in the folder \Samples\chapter05. To test
this sample, just double-click on the script file. If the Internet Explorer 4.0/5.0 is present,
the input dialog is shown.

An InputBox ActiveX control
I discussed the samples given below to allow you a few insights into script programming and using
methods provided from the Internet Explorer (and scripts loaded in MS IE documents). If you need
to implement a user input in JScript, a more simple solution is recommended. Although the WSH
doesn't support an object, which provides an InputBox method, we can extend the WSH with such
an object. All we need is an ActiveX control that provides the object and the method.

NOTE: In chapter 10 I will discuss how to write your own ActiveX control which exposes
the WSHInputBox method.

Because I use the WSHInputBox method in upcoming samples, I like to show you here how to
access this method from JScript. To use the WSHInputBox method, you need to create a reference
to the object. This may be done with the statement:
var objExt = WScript.CreateObject("WSHExtend.WinExt");

The CreateObject method of the WScript object is advised to search the entry WSHExtend.WinExt
within the Registry. WSHExtend is the name of a Type-Library (ActiveX control), whilst WinExt
defines a class name (the object). If the control is registered, CreateObject creates an object in-
stance and returns a reference to this object into the object variable objExt. This variable may be
used later on to access the methods of this object.

NOTE: You need to install and register the WSHExtend ActiveX control before you can
use the WSHInputBox method. The OCX-file may be found in the folder
\Samples\chapter10\ActiveX\ExtAPI. Information about installing/uninstalling OCX-files
may be found in chapter 2.

If you have an object variable with a reference to the WinExt object, you may access the WSHIn-
putBox method using the following syntax:
result = objExt.WSHInputBox (prompt, title, default)

The syntax is equivalent to a VBScript InputBox call, and it opens an input box dialog. The pa-
rameters are defined as follows:

Figure 5.5:
Input dialog using the WSHExtend-objects

108 5 User Input in scripts

© G. Born – Windows Scripting Host Tutorial

♦ prompt: This parameter is mandatory and defines the text shown in the dialog box.

♦ title: Defines the title text of the dialog box window.

♦ default: Contains the initial value shown in the input box.

As soon as the method is called, an input dialog is shown (Figure 5.5). Listing 5.7 contains the
whole JScript program to implement a user input using the WSHExtend ActiveX control.
//**

// File: Input2.js (WSH sample in JScript)

// Author: Günter Born

//

// Demonstrates how to implement a user input in JScript.

// The script uses the ActiveX control WSHExtend.ocx !!!

//**

var vbOKOnly = 0;

var vbInformation = 64;

var vbCancel = 2;

var title = "Born's InputBox function for JScript";

var prompt = "Name:";

// Create the Shell object (needed to use Popup).

var WSHShell = WScript.CreateObject("WScript.Shell");

// Get the WSHExtend.WinExt object. This extends the WSH with

// the InputBox1 method. WSHExtend is an ActiveX control.

var objAdr = WScript.CreateObject("WSHExtend.WinExt");

// open Input dialog

var result = objAdr.WSHInputBox (prompt,title,"Born");

if (result != "") // Test, whether Cancel clicked

 { // No, get input

 var intDoIt = WSHShell.Popup("You entered: " + result,

 0,

 "Result",

 vbOKOnly + vbInformation);

 }

 else

 { // Cancel button was clicked

 var intDoIt = WSHShell.Popup("Sorry, no input",

 0,

 "Result",

 vbOKOnly + vbInformation);

 }

// here I have omitted WScript.Quit() to demonstrate

// that it also works, because the WSH automatically executes

// Quit after reaching the last statement.

// End

An InputBox ActiveX control 109

© G. Born – Windows Scripting Host Tutorial

Listing 5.7.
Input2.js

NOTE: The JScript file Input2.js is located in the folder \Samples\chapter05.

	User Input in scripts
	User input in VBScript
	User input in JScript
	JScript-user input using a second script

	Internet Explorer for JScript user input
	Implementing an InputBox function in HTML
	Call the function within the HTML document
	The InputBox implementation for JScript

	An InputBox ActiveX control

