

© G. Born – Windows Scripting Host Tutorial

D Introduction into JScript
Within this appendix you get a short introduction into the JScript language. If you have used
JavaScript or Java already, programming in JScript will be no major problem. Have a look how a
JScript program is structured and how you may use constants and variables. Read which program
constructs are offered in JScript. Check out how functions are handled in JScript.

Basics
Below I like to discuss a few basics, which are relevant for JScript programs.

What's JScript?
JScript is Microsoft's implementation of ECMA 262 Script. ECMA is the abbreviation for Euro-
pean Computer Manufacturer. This group creates a vendor independent standard for a scripting
languages, which has its roots in JavaScript developed from Netscape in the Netscape Navigator.
Therefore JavaScript is very close to the ECMA 262 specification. This mean, you may use your
JavaScript knowledge to write JScript programs. You must omit only a few Netscape specific
statements and some objects and methods, which are not supported within the WSH. JScript repre-
sents a complete implementation of the ECMA 262 standard, which is extended with a few fea-
tures to support the Microsoft Internet Explorer. But you must not take care about these extensions
within WSH scripts.

NOTE: JScript is also (like VBScript) an interpreted language. Therefore you need only
the source code stored in a .js file to execute the script within the WSH. JScript is (similar
to C++ and Java) object orientated.

The structure of a JScript-program
If you have used JScript or JavaScript within HTML documents, I like to mention the first differ-
ence: JScript program for the WSH doesn't contain any HTML-tags. The whole script is stored
within a .js file. The listing shown below is a typical JScript program:
//**

// File: ErrorTest1.js (JScript)

// Author: (c) G. Born

// Windows Scripting Host Sample Script

// Contains a statement to activate the debugger

//**

var mbOKCancel = 1; // declare variable

var mbInformation = 64;

var mbCancel = 2;

526 D Introduction into JScript

© G. Born – Windows Scripting Host Tutorial

var Text = "Test sample";

var Title = "Born's Windows Scripting Host sample";

var WSHShell = WScript.CreateObject("WScript.Shell");

var intDoIt = WSHShell.Popup(Text,

 0,

 Title,

 mbOKCancel + mbInformation);

 if (intDoIt == mbCancel)

 {

 WScript.Quit();

 }

WScript.Echo("Sample executed");

WScript.Quit(); // terminate script

// End

Listing D.1.
A JScript program

Compared to the VBScript program discussed in the previous chapter, JScript comes with a few
differences, which I like to explain below. Compared to JScript programs included in a HTML
document, a WSH script needs no event handling.

Comments
Would you like, that the interpreter doesn't interpret a line or part of the line within the code? Then
you must mark this statement as a comment. Comments begin in JScript with two slashes.
// This is a comment

WScript.Quit(); // we are ready...

The comment may use the whole line, or it may be appended to an executable statement (as you
can see in the 2nd line above). If a comment is found, the rest of the line is ignored.

NOTE: JScript supports also comments in the format /* …. */ to spread multiple lines. But
I haven't used this format within this book.

Remarks about JScript statements
JScript statements must be entered according to the JScript syntax rules. Compared to VBScript
(and other languages) there are a few remarkable differences.

Important: Because JScript has a similar syntax as C or Java, you must take care how a
statement is written. Keywords, function names or variable names must be spelled case
sensitive. Therefore res = Born() is different from res = born(). Especially beginners fail
with this requirement. This results in many syntax errors during script development.

Basics 527

© G. Born – Windows Scripting Host Tutorial

And all statements must be closed with a semicolon ; (exception: statements, which are in front of
the ending } bracket of a code block). To simplify the code, you may terminate any statement with
a semicolon. The lines shown below are valid JScript statements:
value = 10;

value = value + 10;

Tax = 0.1;

Continued lines
JScript doesn't know a special character (as VBScript) to mark statements which are continued
over several lines., because the semicolon identify the end of a valid statement clearly. Therefore
you may break a statement into several lines. Below I have used this to create a valid statement:
WScript.Echo ("Hello",

 "I was here");

NOTE: I shall mention that a continued line may not contain a comment! And, if a
statement contains a string, the line break must not be within this string. In this case you
may break the string into several sub strings and concatenate these sub strings using the +
sign.

Several statements per line
You may use the colon to separate several statements in VBScript (see previous appendix). But
this doesn't work for JScript. If you like to put several statements into a single line, you must sepa-
rate the statements with commas or semicolons. The following code sequence shows how to do
this:
var x = 15, y = 20;

WScript.Echo (x + y); WScript.Echo ("done");

The sequence produces a message box showing the value 35. To keep your programs transparent
and more readable, I recommend (beside other techniques like "talking" variable names) however
dispense this construction. Or do you understand immediately the following line?
For (var i = 0; i <= 10; i++, j++)

Here I have used the comma within the loop to increment the variable j for each pass. It should be
no problem to move the statement to increment the variable j into the body of the loop.

NOTE: In my opinion this is one reason why C programs using constructions as shown
above are difficult to read.

Constants
Constants are numbers or strings within a JScript statement. JScript knows several possibilities to
define constants.
Result = 15 + 10;

Name = "Born";

Pi = 3.14;

528 D Introduction into JScript

© G. Born – Windows Scripting Host Tutorial

The first line shown above contains the two constants 15 and 10, which are added, and the result is
assigned to the variable result. In line two we assign a string constant "Born" to a variable. The
last line contains also a constant with the value 3.14.

NOTE: JScript doesn't know predefined constants like VBScript. If you like to use
symbolic constants like vbOkonly within your script, you must declare such constants as
variables. I will use this technique within the samples to improve the readability of the
source code.

Variables
Variables allow you to store values in memory and identify it with a name in JScript. Variables
must be declared in JScript before the first use. The declaration may be done either implicitly
using an assignment statement or using the var keyword. The following lines use this technique:
Price = 17;

Tax = 16;

A good programming practice however declares a variable explicitly using the var keyword. This
is used within the following line:
var text; // declare a variable without assigning a value

var x = 19; // declare a value and set its value

var Price = 19;

var y = Math.sin(x);

var x += y; // the shorthand version

var x = x + y; // and the more readable version

var text = "Value ";

The first statement defines just a variable (its value is set implicit to zero). The other lines contain
variable declaration with assignment statements defining also the variable's value and type.

Remarks about the variable scope
Perhaps you wonder, why we distinct between implicit and explicit variable declaration? Why
should I define a variable using the var keyword, if it is sufficient to use the variable name in an
assignment statement? Here's an argument, which puts out the small, but fine difference: The kind
of the declaration influences the scope of a variable. The scope determines where you con access a
variable:

♦ A variable declared within a function with var (for instance var sumx = 0;) is only valid
within this function.

♦ If you use an implicit variable declaration (for instance Vat = 16;) within a function or on
script level, the variable name has a global scope. This means you may use this variable
within the whole script.

I recommend using the var keyword to declare a variable within a function. This restricts the scope
of a variable to the function level. If you need a global variable, declare its name using a var
statement in the script's header. This improves the readability and the maintenance of your script
programs. In this case you can for instance define some pseudo »constants« in the program's
header, whose value may be amended easily.

Basics 529

© G. Born – Windows Scripting Host Tutorial

Variable names
JScript is a case-sensitive language, therefore you must take care how to spell a variable name with
lower case and upper case letters. The variable Born is not equivalent to the name born. JScript
requires the following rules for variable names:

♦ The first character of a variable name must be a letter, an underscore (_) or a Dollar sign ($).
The name Born12 is valid whilst 123 isn't a variable name (because this name doesn't begins
with a letter and it's nothing else than a number).

♦ The other characters in a variable name may be letters, numerals, the underline character or
the Dollar sign. However blanks and other special characters like umlauts, +, -, * and so on
are not allowed within a variable name. So My name is not a valid variable name, because it
contains a blank. Instead you must write the name as My_name.

In JavaScript a variable name may be no longer as 32 characters. In JScript a variable name may
contain an unlimited number of characters. For obvious reasons you should prefer however names
between 8 and 15 characters in length (this saves as lot of typing and reduce the probability for
misspellings).

And you should name your variables in a sense full manner. Do you remember half a year later
what a variable name x1 mean? By the way, here is another restriction about variable naming
conventions: A name must not correspond to reserved JScript keywords. The table below contains
a list of reserved keywords. Compared with the JScript language reference, this table contains a
few additional keywords from JavaScript. It will be wise to recognize these keywords also as for-
bidden for your variable names.

abstract Enum int super

boolean Export interface switch

break Extends long synchronize

byte False native this

case final new throw

catch Finally null throws

char Float package transient

class For private true

const Function protected typeof

continue Goto public try

debugger If return var

default Implements short void

delete Import static while

do In with

double Instanceof

530 D Introduction into JScript

© G. Born – Windows Scripting Host Tutorial

else

Table D.1.
Reserved keywords in JScript

The variable names _pagecount or Part9 are valid, whist 19year is illegal because the first charac-
ter is a numeral. If you declare a variable without assigning a value, the interpreter creates the
variable in the memory, but the value will be set to undefined. Using such an uninitialized variable
on the right side of an assignment causes trouble:
var factor; // value still undefined

var Price = 100 * factor; // Price will be set to "NaN"

The statements shown above demonstrates this. The value of the first variable factor is still unde-
fined. Therefore the interpreter assigns the value NaN to the variable Price. NaN is the abbrevia-
tion for »Not a Number«. If you like to set a value during variable creation, assign a value null or
any other value during variable declaration:
var fact1 = null; // assign a special value null

var note = 3 * fact1; // value is set to 0

Also: Using an implicit variable declaration keeps the risk to use an illegal value. Let's have a look
into the following code sequence:
Name = ""; // implicit variable declaration

var aMess = Name + first_name;

The second line causes a run-time error, because the 2nd variable first_name is declared implicitly
but the interpreter doesn't assign a value.

Remarks about values and data types
JScript variables doesn't own a fixed data type, the language uses a Variant data type. Therefore
you can't define an explicit data type during declaring a variable. The Variant data type keeps
variable values it the required format (numbers, strings, dates and so on). The JScript interpreter
uses an implicit type conversion, if necessary. In some cases you may force this automatic type
conversion. Numbers may be embedded without problems into a string (like "Text" + 99). If you
like to assign a string like "99" to a numeric value, you must use the functions for type conversion
(pursuant() and parseFloat()).

The code sequence shown below uses a type conversion to assign a numeric variable to a string:
var from = 1;

var till = 10;

var action = "Count from ";

action += from + " till " + till + ".";

Executing this code sets the variable action to the string "Count from 1 till 10.". The numeric val-
ues are converted into strings. The code sequence shown below sets the variable x:
var x = 0;

x += 1 + "10";

Executing these statements assigns the value "0110" to x. I found this statement within the JScript
language reference. The statement is really tricky (and should not be used, to keep your programs
readable). The term 1 + "10" on the right side of the assignment statement concatenate a numeric

Basics 531

© G. Born – Windows Scripting Host Tutorial

value with a string. The JScript interpreter converts the numeric value to "1" and returns the string
"110". Now this string must be assigned to the variable x. The assignment operator is preceded by
a + character, which forces an addition of the new value to the value already contained in the vari-
able x. x contains already the numeric value 0 set in the first line. To add the string evaluated on
the right side of the assignment, the current value of x must be converted to a string "0". Then the
new value "0" is concatenated with "110" using the += operator. So the result is "0110".

NOTE: The discussion above shows what you can do with JScript. C coders would like
this language. But I won't recommend to use such a programming style. Instead try to use a
clear programming style. The half-second you will save entering the statement is nothing to
the overhead you need to debug your programs.

Remarks about data subtypes
JScript uses only a few subtypes for variables and constants:

♦ Numeric: You may insert constants like 423 or 3.14159 directly into your source code. JScript
supports both integer and floating-point numbers. Constants may be written using different
radix. If a number begins with the characters 0x (or 0X – a zero followed by the letter x), it
indicates a hexadecimal number (the number may contain the characters 0 till 9, A, B, C, D,
E and F). A number beginning with a 0 (zero without the following x character), defines an
octal value (this number may contain only numerals between 0 and 7). Decimal numbers are
represented with numerals between 0 and 9. Floating-point numbers contain either a decimal
point, an optional "e" or "E", used to represent the exponent (for instance 12.30, 10.0E20 or
20E-10). And you may use the signs »+« or »–«.

♦ Boolean: Variables of this type contain the constants true or false. The result of a compare
operator may deliver also a boolean value.

♦ Strings: These variables are defined with an assignment of string constants like "This is a text
" or '1234'. Strings are enclosed in JScript with quotes ' or double-quotes ".

♦ Null: This is a special value belonging to an uninitialized variable.

These data types are sufficient to write your JScript programs. A detailed discussion of data types
may be found in the JScript programmer's reference.

Special escape characters within strings
If you use strings, you should know also a few characters which have a special meaning in JScript.
For instance " or ' indicates the beginning or the ending of a string.

\b Backspace
\f Form Feed
\n New Line
\r Carriage Return
\t Tab
\' quote
\" double-quote
\\ Backslash

532 D Introduction into JScript

© G. Born – Windows Scripting Host Tutorial

The backslash character is used as an escape character, and the following character is inserted into
the string. To insert a backslash into a string, you must use the \\ combination. The double back-
lash character is important for instance, if a string contains a path definition. The string "C:\name"
causes an error in JScript, because the characters \n are interpreted as »new line«. So you must use
"C:\\name" instead. The characters \n\r may be used within a string to format a message box. If
you need to insert a quote or double-quote into a string, you must write \" or \'. The statement:
Text = "He says: "WSH is cool!""

causes a run-time error, because the interpreter recognizes two strings and a constant, which could
not be resolved. To insert the " into the string, you must write the statement as:
Text = "He says: \"WSH is cool!\""

The interpreter detects the \" sequence and insert the double-quote.

Expressions and operators
JScript allows expressions and operators within a statement. The following section describes these
possibilities in JScript.

Assignment operator
We used the assignment operator (=) already during a variable definition. The statement:
var tax = 17;

defines a variable and assigns the value 17. Below I will discuss how the assignment operator may
be combined with additional operators (like +=).

Comparison operators
If statements using comparison operators for instance to check two values, and the operators return
a boolean value (true, false). JScript supports the following comparison operators:

= = equal
!= not equal
>= greater than and equal to
<= less than and equal to
< less than
> greater than

The next statement shows the use of such an operators:
if (tax == 17) flag = 1;

It the variable tax is equal to 17, the variable flag is set to 1.

NOTE: Using the operators = = and != causes sometimes an automatic type conversion. If
you like to suppress such an automatic type conversion, you must write the operators like
= = = and ! = =.

Expressions and operators 533

© G. Born – Windows Scripting Host Tutorial

Calculation operators
Within a calculation you need calculation operators. The most simple calculation operator is the +
operator (which we have used above). The statements shown below contain a few calculation
operators:
var price = 10 + 1;

end_price = net * (1.0 + tax);

net = price - discount;

var res = 100 / 25;

These statements use the calculation operators +, –, * and /. JScript uses the common rules to
evaluate an expression with several operators (*, / have a higher priority as +, -). But you may use
parenthesis () to group sub expressions, which are evaluated first. JScript supports the following
calculation operators:

+ Addition (a = a + b)
– Subtraction (a = a – b)
* Multiplication (a = a * b)
/ Division (a = a / b)
% Modulo-Division (a = a % b)

These operators may be combined with the assignment operator = (same as in the C language). So
it is valid to write for instance +=. Samples will be given on the following pages.

NOTE: A string concatenation need to be done using the + operator (like var name = "Günter" +
" Born"). This is different from VBScript, where it is recommended to use & for concatenation
(although the + operator works in VBScript). The VBScript ^ exponent operators is provide in
Jscript by Math.pow(base, exponent).

Increment and decrement operators
To add or subtract 1 from a variable, you may use the increment or decrement operator.

++i increments i
––i decrements i
*= multiplikation-incrementation
/= division-incrementation
%= modulo division-incrementation

These expressions are a bit unaccustomed for many Pascal or Basic programmers. Since it saves
time during writing the code, these operators loved particularly by C programmers. I recommend
however to use the familiar operators to assign and add a value (i = i + 1). The following lines
contain a few expression using both types of operators:

a += b is equivalent to a = a + b

a –= b is equivalent to a = a – b

a *= b is equivalent to a = a * b

a /= b is equivalent to a = a / b

a %= b is equivalent to a = a % b (Modulo-Division)

534 D Introduction into JScript

© G. Born – Windows Scripting Host Tutorial

a = ++i increments i with 1 and assign it to a

a = i++ assigns the value of i to a and increments i with 1 afterward

a = ––i decrements i with 1 and assign the result to a

a = i–– assigns the value i to a and decrements i with 1 afterward

The increment-/decrement operators shown above comes in handy also within loops.

NOTE: The position of the + or - sign influences the way in which a value is threaten.
Within a = ++b; the ++ operator is in front of a variable. The interpreter scans the
expression from the left to the right. The ++ operator comes first, so it is used to increment
the variable b. Afterwards the value will be assigned to the variable a. The statement a =
b++; causes that the value of b is assigned to a. Then the value of b is incremented.

Logical operators
Sometimes logical operators are required (for instance in bit operations). JScript supports the fol-
lowing operators:

&& And operator

|| Or operator

>> Bits shift right

<< Bits shift left

>>> unsigned bit shift right

! Logical Not

~ Bitwise Not

& Bitmask with And

| Bitmask with Or

^ Bitmask with exclusive Or (Xor)

NOTE: A sample how bit operators And, Or or Xor works is discussed in the previous
appendix. JScript uses a predefined priority list for the operators. These priorities are used,
if a statement contains several operators, which are not set into parentheses. Table D.2 lists
these priories. The first entry owns the lowest priority.

Operators

Comma ,

Assignments: = += –= *= /= %= <<= >>= >>>= &= ^= |=

Condition ? :

Logical Or ||

Control structures 535

© G. Born – Windows Scripting Host Tutorial

logical And &&

bit wise Or |

Bit wise Xor ^

bitwise And &

equal, not equal == !=

Relational < <= > >=

Bitwise shift << >> >>>

Addition/Subtraction + –

Multiplication/Division * / %

Negation/Increment ! ~ – ++ ––

Call, Member () [] .

Table D.2.
operator precedence

Control structures
Only in a few rare cases your scripts will be linear. Most of your scripts contains branches and also
control structures to decide which branch must be executed. Below I will discuss JScript control
structures.

if statement
The if statement may be used in different versions. The code:
if (condition)

 {
 statements, if condition is true

 }

tests the condition. If the condition, which must be set into parenthesis () and may contain the
comparison operators mentioned above, is true, the statements within the if block are executed. If
the block contains only one statement, this statement may follow in the next line. Blocks contain-
ing several statements must be enclosed with a curly bracket { }. This is shown in the following
sequence:
if (value <= 16.0)

 {

 WScript.Echo ("Sorry, you loose the game");

 value = 0

 }

536 D Introduction into JScript

© G. Born – Windows Scripting Host Tutorial

Within this code snipped, the variable value will be set to 0, if the current value is less than or
equal 16. Here we use the brackets to set a block of statements. By the way, the semicolon within
the last statement within a block is optional, because the ending } defines the statement's end.

If you need a condition, which executes one of two branches, you must use the if .. else structure.
The statement uses the syntax shown below:
if (condition)

 {

 statements, if condition is true

 }

else

 {

statements, if condition is false

 }

The if statement tests the condition. If the result is true, the statements within the block following
the if statement are executed. If the condition is false the statements in the else block are executed:
if (value <= 16.0)

 {

 WScript.Echo ("Sorry, you loose the game");

 value = 0

 }

else

 {

 WScript.Echo ("Congratulation, you won");

 }

TIP: One reason for program malfunction is a wrong nesting of statements within the if
block. You may omit the bracket { }, in case that if or else is followed by one statement.

Conditional operator
JScript supports a conditional operator, which assigns a value depending from a condition. The
operator uses the following syntax:
(condition) ? value1 : value2

The parentheses contains a condition. The parentheses is followed by a question mark. If the con-
dition is true, value1 in front of the colon is used. Otherwise the second value is used. This is
shown in the next line:
status = (age >=18) ? "Adult" : "Child";

If age is above or equal 18, status will be set to Adult. Otherwise status will be set to Child.

for loop
for loops may be used to repeat a block of statements in a defined manner. The number of repeat-
ing are defined with a counter. The for loop uses the following syntax:
for(var count = 1; count <= 100; count++)

for loop 537

© G. Born – Windows Scripting Host Tutorial

 {

 statements

 }

The variable count in the header of a loop is set to the start value during the program flow enters
the loop. The keyword var defines a local variable for the counter used within the loop body. Dur-
ing each pass the value of count will be incremented (this is caused by count++) or decremented
(this is caused using count–– in the third parameter). Because ++ is following the variable name,
the variable value is used first, and then it is incremented. The end condition for the loop is defined
in the second parameter (count <= 100). The next listing shows how a loop may be used within a
WSH script.
//**

// File: WSHDemo.js (WSH sample in JScript)

// Author: (c) Günter Born

//

// Trace the program with message boxes

//**

// The next statements enables/disables trace messages

// variables declared here are global

// var DebugFlag = false; // disable trace

var DebugFlag = true; // enable trace (

 j = 0;

 debug ("Start", 0, 0);

 for (var i = 1; i <= 10; i++) // try 10 loops

 {

 debug ("Step: ", i, j);

 j = j + i; // Add values

 }

 debug ("End", i, j);

 WScript.Echo ("Result: ", j);

 WScript.Quit ();

function debug (text, count, val)

{

 if (DebugFlag) // Debug mode enabled?

 WScript.Echo (text, i , "Interims result: ", j)

}

// End

Listing D.2.
Using a for loop

538 D Introduction into JScript

© G. Born – Windows Scripting Host Tutorial

for ... in loop
A for in loop may be used in JScript to access elements (objects in a collection or items in arrays).
This loop uses the following syntax:
for (variable in [object | array])

{

 statements

 }

The keyword in is followed either by the name of a JScript object or of an array. The for loop
causes that (a reference to) each item within the collection/array is assigned to the variable vari-
able. The loop terminates, after all elements are processed.

while loop
while loops are executed till a loop condition becomes false. This loop uses the following syntax:
while (condition)

{

 statements

}

The condition is tested during each pass. If the condition is true, the statements within the { }
block are executed. Equivalent to the for loop you may omit the bracket { }, if the loop contains
only one statement. The sample below shows how to use this kind of loop:
var i = 0;

 while (i <= 10) // try 10 passes

 {

 WScript.Echo ("Step: ", i);

 i++; // Add values

 }

The program loops till the index is set to 11. Each pass shows the current index within a message
box.

do ... while loop
do ... while loops work similar like while loops. Such a loop may be used to process a block of
statements several times, till the condition becomes false. The following syntax is used:
do

 {

 statements

 }

while (condition);

Comparing to a while loop, the condition in a do .. while loop is tested on the loop's end. This
means, the loop will be executed at least only once (even the condition is false). If the condition is
true, the statements within the { } block are executed again. If the loop contains only one state-

for loop 539

© G. Born – Windows Scripting Host Tutorial

ment, you may omit the { } brackets. The next code snippet is derived from the JScript tutorial and
it shows how to use this loop to process all drives of a Drives collection:
function GetDriveList()

{

 var fso, s, sharename, objDrives, drive; // declare local variables

 // use FileSystemObject

 fso = new ActiveXObject("Scripting.FileSystemObject");

 objDrives = new Enumerator(fso.Drives); // get drives collection

 s = ""; // init result variable

 do // the loop

 {

 drive = objDrives.item(); // get item

 s = s + drive.DriveLetter; // store drive letter in result

 s += " - ";

 if (drive.DriveType == 3) // shared drive?

 sharename = drive.ShareName; // use share name

 else if (drive.IsReady) // local fixed drive ?

 sharename = drive.VolumeName; // yes, use volume name

 else

 sharename = "[Drive not ready]"; // removable drive

 s += sharename + "\n"; // add new line

 objDrives.moveNext(); // skip to next item

 }

 while (!objDrives.atEnd()); // test end condition

 return(s); // terminate and return result

}

switch statement
The switch statement offers the possibility to execute several blocks of statements depending on
the value of an expression. Switch uses the following syntax:
switch (expression)

{

 case label :

 statements

 case label :

 statements

...

 default :

statements

}

At the beginning of the construction the condition is given. Depending on the value of this condi-
tion one of the case branches is selected and the statements within this block are executed. The
identifier label is a placeholder for the value of the expression. If the expression is equal to the
given value in label, the block is executed. If no block fits the condition, the statements within the
default branch are used. The next sequence shows how to use the switch statement:
function Test(x)

540 D Introduction into JScript

© G. Born – Windows Scripting Host Tutorial

{

 switch (x){

 case 1:

 ...

 case 2:

 ...

 case 3:

 ...

 default:

 ...

}

Here we use a variable x for the condition. If x = 1, the first branch in case 1: is executed. On x =
2 the next branch is processed and so on. A break statement (like in C) isn't needed to prevent fall
conditions from falling through.

break and continue
In JScript you may use the (optional) break keyword to terminate a loop unconditionally (break is
similar to the Exit statement in VBScript). If the interpreter detects this keyword, the current loop
terminates and the code following the loop is executed.

The continue keyword causes the opposite. If the interpreter recognized this keyword, the program
control is transferred immediately to the beginning of the loop. The loop index will be incremented
or decremented, and the loop is executed again.

Built-in-objects and -functions
JScript supports a few built-in objects (String-object, Math-object, Date-object) and functions.
Below you will find a few information about these topics.

Functions
Functions combines several operations under one name and may be called from a program using
the function name. If the function terminates, a result is returned. JScript supports user-defined and
built-in functions. User-defined functions are defined according to the following syntax:
function test (arguments)

{

body with statements

return;

}

A function is declared with the keyword function followed by a function name and an argument
list set in brackets. The statements within the function body must be enclosed in curly brackets { }.
The return statement terminates a function.

Objects 541

© G. Born – Windows Scripting Host Tutorial

The function may be called within a script. You must insert the function name and the parameters
set in brackets. Because a function returns a value, the function call must always be on the right
side of an assignment statement. The next line calls the function test for instance:
result = test ();

Parameters must be set in parenthesis. If the function doesn't requires parameters, an empty
bracket must be used. Commas separate several parameter.

Built-in-functions
The JScript language definition contains a few Built-in-functions, to handle expressions, special
characters or convert strings and numeric values.

The eval function evaluates a string, which is passed as an argument (parameter), and returns the
evaluated value (for instance value = eval("14+15");). parseFloat gets the argument and tries to
return a floating-point value. If the string argument contains an illegal character (not +, – or 0 to 9,
. or e), the string will be converted only from the begin to the illegal character. If the argument
doesn't contain a number, the NaN (Not a Number) value is returned. The function parseInt re-
quires a string as the first argument. The second argument must contain the code for the base
(10=decimal, 8 = octal, 16 = hexadecimal etc.). An illegal string cause a result NaN. parseInt re-
turns always an integer value.

NOTE: A detailed description of all built-in function may be found in the JScript language
reference (http://msdn.microsoft.com/scripting).

Objects
Beside functions JScript also supports a few build-in objects to process strings, executes mathe-
matical operations or to manipulate date and time values:

♦ The String object is used, if a string is assigned to variable or property (like name = "Born";).
The object supports several methods to manipulate strings.

♦ The Math object offers methods and properties for mathematical operators (for instance value
= Math.PI; assigns the property Pi to a variable).

♦ The Date object is used to handle date and time values (for instance var Name = new
Date(parameters); creates a new date object, today = new Date(); returns the date).

In JScript you may handle objects and arrays in the same way. You may access also objects and
collections in a similar way. To access a method or property of an object, you must insert the ob-
ject name, followed by a dot and the name of the property/method into the code. The statement:
WScript.Echo ("Hello");

uses the Echo method of the WScript object to display a text within a message box.

NOTE: Here I should point out that JScript requires parenthesis to submit parameters to a
procedure (method), whilst VBScript doesn't requires this parenthesis.

Accessing an object within a collection, you can use an index value. The following statements are
equivalent:

542 D Introduction into JScript

© G. Born – Windows Scripting Host Tutorial

Res = Object.width;

Res = Object[3]; // [3] should be equivalent to index "width"

Res = Object["width"];

While the bracket are valid through accessing the numerical index, the dot must be omitted, if an
index value is used. Therefore the next statement causes a syntax error:
Res = Object.3;

If an object contains another object as a property, the naming scheme must be extended:
var x4 = toDoToday.shoppingList[3].substring(0,1);

The object property is followed by a dot, followed by a sub-object. Arrays may be handled very
easy in JScript. The next statement defines an array:
var name = new Array(17);

The array contains the items with the indexes from 0 to16. You may use the following code to
assign a value to the first item:
name[0] = "Born";

The number of array items may be estimated using the following code:
number = name.length;

The next statement creates a multi-dimensional array:
var namex = name [3][7];

NOTE: Here I like to terminate the introduction into JScript. You may get the whole
JScript language reference including a tutorial from Microsoft's web site
http://msdn.microsoft.com/scripting. But take care, there are different JScript language
engines available. Windows 98 and Internet Explorer 4.0 installs the version 3.x of the
JScript language engine. Internet Explorer 5.0 comes with the JScript language engine
version 5.0. And you can download the latest language engine from the web. Version 5.0
supports a few new features like error handling. Further information may be found in the
language reference.

	Introduction into JScript
	Basics
	What's JScript?
	The structure of a JScript-program
	Comments
	Remarks about JScript statements
	Continued lines
	Several statements per line
	Constants
	Variables
	Remarks about the variable scope
	Variable names
	Remarks about values and data types
	Remarks about data subtypes
	Special escape characters within strings

	Expressions and operators
	Assignment operator
	Comparison operators
	Calculation operators
	Increment and decrement operators

	Logical operators
	Control structures
	if statement
	Conditional operator

	for loop
	for ... in loop
	while loop
	do ... while loop
	switch statement
	break and continue

	Built-in-objects and -functions
	Functions
	Built-in-functions

	Objects

