
© G. Born – Windows Scripting Host Tutorial

C Introduction into VBScript
Microsoft offers a VBScript Language Reference and a Tutorial with detailed information about
the language. The purpose of this chapter is to give a brief introduction into VBScript. You may
read the following pages, if you have never used VBScript or if you like to check special language
constructs (like how an if-statement must be written in VBScript).

TIP: I recommend downloading the VBScript language reference as a CHM file from the
Microsoft Web site http://msdn.microsoft.com/scripting.

Statements, continued lines and com-
ments
VBScript is a subset of Visual Basic for Application (VBA, the language provided from Microsoft
Office), and VBA is a subset of Visual Basic (VB). Microsoft has removed several language con-
structs from VB/VBA to define the VBScript syntax. If you have programmed in VB or VBA,
VBScript programming should be no major problem. Below you will find some basic remarks
about the structure of VBScript programs.

VBScript statements
VBScript statements must be entered using the syntax rules defined for this language. The follow-
ing lines contain valid VBScript statements:
Value1 = 10

Value1 = Value1 + 10

If Value1 > 100 Then Value1 = 100

Tax = 0.1 : Price = Net * Tax

You may enter several statements within one line, if you separate these statements with colons ":".:
This was used above for instance in the last line. I recommend using several statements within a
line sparely to keep your programs more readable.

NOTE: In contrast to JScript the VBScript statements and keywords are not case-sensitive.
Decimal values are to be indicated in the VBScript with a dot (like 14.34).

Continued lines
Using very long statements reduce the readability of your script. The following statement:
MsgBox "You have entered a wrong name into the text box shown in the previous form",
vbOkOnly, "Input Error"

shows a message box. Unfortunately the statement is longer as the current line. If a program con-
tains many extra large lines, the readability gets worse (you have always to scroll horizontally to

504 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

edit such lines). But you may append a blank followed by the underscore _ character to the end of
a line and continue the statement within the next line. This is used in the statement below:
MsgBox "You have entered a wrong name into the text box " + _

"shown in the previous form", _

 vbOkOnly, _

 "Input Error"

Each time the language engine detects a line ending with an underscore, a continued line is as-
sumed. Then the next line is threatened as the next part of the current statement. You may use the
underscore character to divide a statement up to 10 lines.

NOTE: The last line of a continued statement may not have the appended underscore. Keep
also in mind that no comments may be appended to a line containing an underscore
character. If you like to use a long string in continued lines, split the string into several sub
strings. Each sub string must be terminated with a double-quote. Then you may insert the
underscore to divide the statement into several lines. The sub strings may be concatenated
using the & or + operator (like ".... " + _). I have used this structure in the sample statement
shown above.

Comments
Would you like to tell VBScript not to interpret a line or a part of a statement? Just need to write
this statement as a comment. In VBScript a quote ' or the REM statement are used to mark a com-
ment. If the VBScript interpreter detects this character within a statement, it ignores the rest of the
line. Both of the following lines contain comments:
' This is a whole line containing a comment

Value1 = Net * Factor ' comment at line end

The second line contains also a comment, which follows the statement. This means, VBScript
executes the statement at the beginning of this line and ignores the trailing comment. This may be
used to comment statements within a script.

Remarks about the structure of a VBScript program
A VBScript program script may consist of comments and statements. The script files used in this
book comes with an extraordinary structure however. This structure is used in the listing shown
below:
'**

' File: WSHTest.vbs

' Author: (c) G. Born

'

' Demonstrates how the WSH may be used to show

' a simple dialog box.

'**

Dim WSHShell ' declare objects

Dim Message

Dim Title

Variables and constants 505

© G. Born – Windows Scripting Host Tutorial

' init variables

 Message = "Hurray, it works"

 Title = "WSH sample - by G. Born"

' Now we try to use the MsgBox function

' MsgBox prompt, buttons, title

' prompt: Text shown in the dialog box

' title: Title shown in the box

' buttons: the buttons

MsgBox Message, _

 vbInformation + vbOKOnly, _

 Title

WScript.Quit() ' terminate the script

'* End

Listing C.1.
VBScript program

As I have mentioned in previous chapters, it's always a good programming practice to add com-
ments to your scripts. If you got a foreign script, you will surely welcome, if the author has noted
the purpose of the script and other information in the programs header.

NOTE: Also let me mention that you can use VBScript programs within HTML documents
and execute these scripts within the Internet Explorer (MSIE). Although the same language
engine is used for Internet Explorer and WSH, the objects (or more precisely the object
model) exposed from WSH and MSIE differ. For instance, the whole event handling
provided from the Internet Explorer is useless within the WSH environment.

Variables and constants
In VBScript you may use variables and constants to store values. Below I will discuss how to
defined variables and constants.

Constants
You may use values directly as constants in VBScript statements. The following code defines such
a constant:
result = Price * amount + 100.0

The value 100.0 is used as a constant within the formula. Often however the programmer wish to
set a constant or identifier in the VBScript program header. The constant's value is protected from
being changes from executing code. A constant must be declared explicitly.
Const profit = 100.0

The keyword Const invokes the constant declaration. This keyword is followed by the constant's
name and the constants value. A named constant declared in this way may be used in any further
statement within the VBScript program.

506 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

Price = NetPrice * Amount + profit

The advantage of named constants is that you may change the value of a constants within the dec-
laration, instead of amending constant values spread over the whole source code. And you can
assign meaningful names to a value (this simplifies code maintenance). It's also possible to define
several constants within a single line:
Const VAT = 0.16, Profit = 10

VBScript supports (in contrast to VB or VBA) only the Variant data type (see below). Named
constants are declared as public by default, this means the constant is available to the whole script.
If you declare a constant within a procedure, the scope is valid only within the procedure. You
may overwrite this default scope using the Public and Private keywords (see also the following
pages).

TIP: Numerical constants are written usually in the decimal system (10.14 for instance).
You can use however also constants in the hexadecimal system in the format &Hxxxx,
where xxxx stands for a hexadecimal number. The value &H0C corresponds for instance
with the decimal number 12 (see below »Comparison Operators«).

Intrinsic constants
VBScript contains several predefined constants (named Built-in or intrinsic constants) like vbOk-
Only, which may be used within your scripts. The statement:
MsgBox "Hello", 0 + 64, "Test"

is much more cryptic compared to a statement containing named constants like it is shown below:
MsgBox "Hello", vbOkOnly + vbInformation, "Test"

The only difficulty during writing the code is that you must know the exact name of the required
constant.

TIP: Download the VBScript language reference from the Microsoft Web site
http://msdn.microsoft.com/scripting. This language reference contains also a list of intrinsic
constants.

Variables
Variables are placeholders that refer to a memory location where a program can store values. Vari-
ables may be (in contrast to constants) change its value during program operation. A variable may
be used directly within a program:
Price = 45 ' set the price

Discount = 17

As soon as the name of a variable occurs the first time within the program, VBScript creates the
variable in the computer memory and assigns an initial value. VBScript supports only the Variant
data type for a variable. This means you can store different values like numbers, texts and so on
into a variable.

Variables and constants 507

© G. Born – Windows Scripting Host Tutorial

Some remarks about VBScript data types
Compared to Visual Basic or VBA, VBScript supports only one Variant data type. A Variant is a
special kind of data type that may contain different kind of information. The format of a value
stored in a Variant depends on the value. If you assign a number to a variable, it will be stored in a
numeric format. A date value will be stored in the date format, texts are stored in a string format
and so on.

NOTE: For C/C++ programmers: The Variant data type class is implemented as a union of
many data types

VBScript tries to accomplish the most logical operation on variables. For instance: If you add the
content of two variables with numerical values the result becomes also numerical. The statement:
Sum1 = Price + 15.0

stores a numerical result within the variable Sum1. The statement:
Result = "Value " + Sum1

causes a problem: The first part of the expression on the right side of the assignment is a string,
whilst the variable Sum1 contains a numerical value. The VBScript interpreter can't assign a result,
so an error message is shown (Figure C.1).

Figure C.1.
Error message as a result of type mismatch

In such a case you may convert the subtype using the following statement.
Result = "Value " + CStr(sum1)

The VBScript function CStr() converts the numerical value contained in the variable sum1 into a
Variant data type with the string format. This result may be concatenated with the second string
"Value " and the result may be assigned to the variable Result.

NOTE: Concatenating strings using the "+" operator isn't a good programming practice
(although I use it sometimes). The "+" operator »add« some operands, which is a
concatenation operation for strings. A better approach uses the "&" operator for string

508 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

concatenation (like "Hello " & "World"). In this case VBScript will do the type conversion
automatically (without using CStr()).

You can treat also numbers as strings, if these are defined as constants. To do this you must en-
close the constants in quotation marks. The statement:
Text = "15" & "30"

doesn't produce the value 45, instead Text contains the value "1530"! You can use conversion
functions to convert data from one subtype to another Variant subtype.

Variant subtypes
VBScript supports subtypes for the Variant data type. I have mentioned above that a variable may
contain different values like numbers, strings, date values and so on. Within a date value also a
numerical value is used. But this value uses a different format compared with a numerical value.
Other data types represents logical values (true or false), or integer numbers and floating point
numbers.

NOTE: The difference is made within the subtypes of a Variant. The VBScript
Programmers Reference contain a table with all subtypes supported within a Variant
variable.

In contrast to VB or VBA you can't predefine a subtype for a variable. VBScript assigns the
subtypes automatically. But you can use conversion functions like Asc, CBool, CByte,
CCur, CDate, CDbl, Chr, CInt, CLng, CSng, CStr, Hex and Oct to convert the data types.
Additional you may use the VarType function to query the subtype.

The Option Explicit keyword
Using an implicit variable declaration causes the risk to create incorrect typed variable names. If
you mistype a variable name, the VBScript interpreter creates a new variable. Let's assume you
wrote Pris instead of Price. The following code snippet contain this typo:
VAT = 16.0

Price = 0

Net = 115.00

Pris = Net * (1.0 + VAT/100)

MsgBox Price, vbOkOnly, "Price "

The program sequence shown above won't work. The price calculated should be assigned to the
variable Price, and it is intended to show this value in a message box. The typo in the assignment
statement causes that the price calculated is stored in the (new) variable Pris. Therefore the mes-
sage box shows always the result 0.

To detect mis-typed variable names you can use the keyword Option Explicit within the first line
of your program. If the interpreter recognizes the Explicit keyword, all variables must be declared
explicitly using Dim, Private, Public or Redim statements. If you forget this declaration, the WSH
reports each implicit declared variable in an error dialog. This uncovers also mistyped variable
names.
Option Explicit

'**

' File: ErrorTest2.vbs (VBScript WSH)

Variables and constants 509

© G. Born – Windows Scripting Host Tutorial

' Author: (c) G. Born

'

' Use an undeclared (mis-typed) variable to demonstrate

' the Option Explicit statement.

'**

Dim Message ' declare variables

Dim Title

' init variables

 Message = "Hello world"

 Titel = "WSH sample " ' this name isn't declared!!

' Show a message:

MsgBox Message, vbInformation + vbOKOnly, Title

WScript.Quit() ' terminate script

' End

Listing C.2.
Demonstrating the Option Explicit error (ErrorTest2.vbs)

The script contains a mistyped variable Titel. If the interpreter reach the line with the string as-
signment to the variable Titel, an error message shown (Figure C.2).

Figure C.2.
Error message indicating a undefined variable

510 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

Using the Dim statement
In VBScript scripts you will find sometimes the keyword Dim. I mentioned this keyword above.
The keyword Dim may be used to:

♦ explicitly define a variable at procedure, function or script level.

♦ or to define an array variable.

If you use the Option Explicit statement, you must declare all variables using the Dim keyword.
This may be done within the script header or inside in a procedure/function:
Dim text

Dim x

Dim Price, Vat

NOTE: During declaration of a variable its value gets automatically initialized. Numerical
variables receive the value 0 whilst strings is set to an empty string ("").

Public and Private within a variable declaration
It was mentioned already in the previous section: A variable declared with Dim on script level is
also valid within the procedures/functions. A variable declared with Dim within a procedure or
function is valid only inside within the procedure/function. So the variable scope should be clear.
The VBScript language reference knows however still the keywords Public and Private, to limit
the validity of variables.
Public Test

Public Price, Vat

The keyword Private restricts the scope of a declared variable to the script. If you use the Public
keyword, the variable will be known in all scripts and procedures.

NOTE: The statements Public xvalue or Private xvalue are illegal within a
procedure/function and causes a syntax error. If you use the Option Explicit-statement, you
are forced to declare variable using the Dim statement.

Perhaps you wonder now, what kind of sense Private and Public keywords make? The Dim
statement suffices to determine the variable scope between procedures/functions and script
level. But VBScript was developed however originally for HTML documents. And such a
document can contain several scripts arranged within <SCRIPT>-Tags in the HTML code.
With the keyword Public you can declare a variable that is valid also outside the local script
in other scripts (of the same HTML document).

Array declaration with Dim
VBScript supports arrays, which must be declared in the following order:
Dim value (10)

value (0) = 11

The first line defines an array with 11 items (the index starts always with 0). The first array ele-
ment may be accessed using value(0). The second statement shown above assigns the value 11 to

Operators 511

© G. Born – Windows Scripting Host Tutorial

the first array element. The Dim statement allows you to declare multidimensional arrays. The
statement:
Dim value (10,10)

declares a two dimensional array. Value (0,0) is the first element in row 0 and column 0. VBScript
allows up to 60 dimensions for arrays. The lower bound for arrays is always set to 0. Therefore
you can set only the upper bound of an array within the Dim declaration.

NOTE: Using the Dim statement with an empty bracket (for instance Dim value ()) define
dynamic arrays. The dimension of a dynamic array may be redefined using the ReDim
statement.

Variable names
A variable name may contain up to 255 characters. You can choose the variable name freely, as
long as the name suffices the following criteria:

♦ The name must begin with a letter (Test is a valid name whilst 123 is illegal).

♦ Within the variable name you doesn't may use blanks, dots, commas and some special charac-
ters (for instance !, -, +).

And you may not use keywords like Sub, If, End, Dim and so one for variable names.

Operators
VBScript supports several types of operators (arithmetic operators, logical operators, comparison
operators, operators for concatenation). Below you will find a short introduction into these
operators.

Arithmetic operators
The following table contains the arithmetic operators available in VBScript.

Operator Remark

^ Exponentiation (x = y^Exponent)

+ Addition (x = a + b)

– Subtraction or negative sign (x = –10 or x = a – 100)

* Multiplication (x = b * 30)

/ Division (x = a / b)

\ Integer-Division (x = a \ b)

Mod Modulo (x = a Mod b)

512 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

Table C.1.
Arithmetic operators

NOTE: It is possible to use the + operator also for string concatenation (for instance Name
= "Mill" + "er"). But this can cause problems. Therefore you should use the & operator for
string concatenation. If an operand contains the value Null or Empty, the result is also Null
or Empty. Further information may be found in the VBScript language reference.

Assigning object references with the Set-Operator
The Set statement has a special meaning in VBScript. To access an object you need a reference to
the object. This references must be assigned using Set. The following statement shows how to use
Set:
Set objAdr = WScript.Arguments

This assigns an object reference to the variable objAdr which points to the Arguments property of
the WScript object. The variable uses the data type Variant, but the subtype is set to Object. After
assigning an object variable, you may use this reference in a statement:
MsgBox objAdr.Item(0)

The statement above shows the first argument passed to the script in a message box.

NOTE: At this point I like to give a short explanation about the dot, which appears in many
names. The dot separates the names of objects, methods or properties within the statement.
In the line shown above objAdr is the object reference, while Item presents a property.

Logical Operators
VBScript supports a few logical operators to evaluate expressions. The following table presents
these operators.

Operator Remarks

Not NEGATION (x = Not y)

And AND (x = a And b)

Or OR (x = a Or b)

Xor EXCLUSIVE OR (x = a Xor b)

Eqv EQUIVALENCE (x = a Eqv b)

Imp IMPLICATION (x = a Imp b)

Table C.2.
Logical operators

Logical operators are used often in branches. The following statement tests two conditions:
If a > 100 And a < 1000 Then

Both conditions (a > 100 and a < 1000) deliver a logical value true or false which are compared
with And. Only if both conditions are true the IF branch is executed.

Operators 513

© G. Born – Windows Scripting Host Tutorial

You may use the operators Not, And, Or and Xor to calc bit operations on byte and integer values.
The Not operator uses the truth table shown below:

Not Bit

0 1

1 0

Table C.3.
Not operator

The Not function reads the bit and inverts its value. A 0 is converted into a 1 and vice versa. Such
operations may be best demonstrated within the binary or hexadecimal system. A decimal number
3 may be written in a binary system as 0011 (if we use 4 digits for the representation). Using the
Not operator creates the following result:

1100

which is equivalent to the hexadecimal value 0CH or decimal 12. The And operator compares two
bits. If both bits are 1 the result is also 1. This is given in the next table. The input values are given
in column Bit whilst the result is shown in column And.

And Bit Bit

0 0 0

0 0 1

0 1 0

1 1 1

Table C.4.
And Operator

The following statement uses the And operator:
MsgBox (3 And 7)

and the result 3 is shown in the message box. The statement within the bracket does a bit wise
operation with And. For novices: A decimal 3 may be represented as a binary value of 0011 and
decimal 7 is equivalent to the binary value 0111. So the And operator delivers according the table
above the result 0011, which is equivalent to 3 decimal.

The Or operator compares two bits with OR. If one bit is 1, the result is also set to 1. The follow-
ing table shows the possible results of the Or operator.

Or Bit Bit

0 0 0

1 0 1

1 1 0

1 1 1

514 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

Table C.5.
Or operator

The Or operation:
MsgBox (3 Or 7)

delivers the result 7 in a message box. The decimal value 3 is equivalent to 0011 decimal and 7
decimal is 0111 binary. The Or operator delivers 0111 binary which is 7 decimal. The last binary
operator that is used in common is Xor. This operator causes the result 1, if both input values are
different.

Xor Bit Bit

0 0 0

1 0 1

1 1 0

0 1 1

Table C.6.
Xor operator

Comparison operators
VBScript knows a few comparison operators. I have shown the first compare operator already
within the previous section. These operators allow the comparison of expressions (which may
contain numbers, strings and so on). The next table contains the compare operators available in
VBScript.

Operator Remark

< Less then (a < b)

> Greater then (a > b)

= Equal (a = b)

<= Less then or equal (a <= b)

>= Greater then or equal (a >= b)

<> Not equal (a <> b)

Table C.7.
Comparison operators

Comparison operators are used in branches and in loops:
While a < 10

..

Wend

If a > 100 Then

...

Control structures 515

© G. Born – Windows Scripting Host Tutorial

End If

NOTE: Keep in mind during using of compare operators that VBScript knows only
Variant variables. If the two subtypes are of different data types, VBScript converts the
data types automatically. As a result of this conversion it can be happen, that values, which
are not equal, are interpreted as equal.

Operator priorities
You can use parentheses to set the priorities for the evaluation of operators. Without parentheses
the parser uses implicit operator priority (Exponentiation, Negation, Multiplication/Division, Inte-
ger Division, Modulo, Addition/Subtraction, Concatenation). The previous sequence shows the
order of the priorities, while Exponentiation has the highest priority. For comparing operators we
will have the following priority order (=, <>, <, >, <=, >=), where the Equal sign = has the highest
priority. For logical operations the Not operator has the highest priority, followed by And, Or, Xor,
Eqv, Imp, &.

Control structures
VBScript supports several control structures to control loops and branches. Below I will introduce
these structures.

If ... Then
The If statement may be used to implement a branch, depending on a compare operation. The
statement:
If a > 100 Then a = 100

resets the variable a to 100, if its value is greater than 100. The next sequence:
If a > 100 Then

 a = 100

 b = 20

End If

compares the variable a with 100. If the value is higher than 100, then the statements between If ..
Then and End If are executed. Otherwise the program continues with the statement following the
End If line.

If ... Then ... Else
This variant of the If statement may be used to create two branches. The sequence:
If a > 100 Then

 a = 100

 b = 20

Else

 a = a + 10

516 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

 b = a \ 10

End If

tests the variable a. If the value is greater 100, the statements between If .. Then and Else are exe-
cuted. Otherwise the statements between Else and End If are used.

If ... Then ... ElseIf
This variant of an If statement allows nesting of several If blocks. The sequence shown below uses
this construction:
If a = 1 Then

 b = 100

 c = 20

ElseIf a = 2 Then

 b = 200

 c = 40

ElseIf a = 3 Then

 b = 300

 c = 60

End If

The variable a is tested for different values. If a compare operation delivers the result true, the
statements between ElseIf and the next ElseIf or End If keyword are executed.

Select Case
This keyword may be used to test a variable for several conditions. Depending on the variable's
value several blocks of code may be defined. The sequence below shows how to use a Select Case
construction:
Select Case a

 Case 1

 b = 100

 c = 20

 Case 2

 b = 200

 c = 40

 Case 3

 b = 300

 c = 60

 Case Else

 b = 0

 c = 0

 a = 1

End Select

This code sequence tests variable a. The Case statements contain the value to be tested against the
variable. If a condition is true, the statement within the Case branch are executed. If none of the
Case conditions is true, the (optional) Case Else branch is used.

Loops 517

© G. Born – Windows Scripting Host Tutorial

Loops
Loops are used to repeat some statements within a block. The following sections contain a short
overview about the loop constructs available within VBScript.

Do While ... Loop
A Do While sequence creates a loop. The header of this loop contains a condition, which must be
true to execute the statements within the loop. If the condition is false, the interpreter continues
program execution with the statements following the Loop keyword. The code sequence shown
below uses a Do While loop.
a = 1

Do While a < 10

 a = a +1

Loop

The condition a < 10 is tested before the loop is entered. If the condition is true, the interpreter
executes the statements till the Loop keyword is reached. The condition in the loop's header is
tested again. This is repeated until the condition becomes false. In this case the interpreter contin-
ues with the statement following the Loop keyword.

Therefore the condition within the loop's header must deliver the values false or true to execute
and terminate the loop.

Do Until ... Loop
The Do Until statement creates a loop, which is tested at the entrance of the loop. If the condition
is false, the loop is executed. The loop terminates as soon as the condition becomes true. The fol-
lowing sequence shows a sample using this statement:
a = 1

Do Until a > 10

 a = a +1

Loop

Within this loop the condition a > 10 is tested. If the condition isn't true, the statements within the
loop are executed. After the condition within the loop's header becomes true, the program is con-
tinued with the statement after the Loop keyword.

Do ... Loop While
The statement Do ... Loop While may be used to create a loop containing the condition test at the
end of the loop. If the condition at the end of the loop is true, the loop will be executed repeatedly.
The loop terminates, if the condition becomes false. The code shown below demonstrates the use
of this keywords:

518 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

a = 1

Do

 a = a +1

Loop While a < 10

This loop tests the condition a < 10 at the end of the block. If the condition is true, the statements
between Do and Loop are processed again. If the condition is getting false, the next statement
following the loop is executed.

Do ... Loop Until
With Do ... Loop Until you may create a loop which is tested at the end of the block. If the condi-
tion is false, the loop statements are processed again. If the condition becomes true, the loop ter-
minates, and the statement following the loop gets executed:
a = 1

Do

 a = a +1

Loop Until a > 10

The code shown above tests the condition a > 10 at the loop's end. The loop is processed till the
condition becomes true.

Exit Do
The Exit Do keyword may be used within all Do loops to terminate the loop. If the interpreter
recognizes this statement, the loop is terminated and the statement following the loop is executed.

For ... Next
A For loop may be used to process a predefined number of steps. All statements within the For ...
Next block are processed during each step. The sequence shown below demonstrates how a For
statement may be used within VBScript:
For i = 1 To 10

 a = a +1

Next

The loop is repeated 10 times. The value i contains the loop index. The step width of a For loop is
set to 1 by default. But you may use the For i = start To end Step x construction to set implicit the
step width to the value x.

For Each ... Next
Some other important construction is the For Each sequence. These sequence is used to create a
loop to process all elements within a collection or within an array. The loop will be repeated for
each item within the collection/array. The next lines shows how to use such a loop:

Procedures and functions 519

© G. Born – Windows Scripting Host Tutorial

For Each x In Worksheets

...

Next

Exit For
The statement Exit For may be used to terminate a For loop. If the interpreter detects this state-
ment, the next line following the loop is executed.

While ... Wend
You can use a While ... Wend loop to process a code sequence several times. The loop terminates,
if the condition in the line containing the While statement becomes false. The code below shows
how to use this kind of loop:
Dim value

value = 1

While value < 10

 value = value + 1

...

Wend

The loop shown above is repeated until value becomes 10. You may also use the Do ... Loop state-
ments to get the same result.

Procedures and functions
In VBScript you may use built-in procedures and functions, and you may define your own func-
tions and procedures. Below I will discuss the basics to create user defined procedures and func-
tions VBScript.

Functions
Functions are to be used, if only one result (which can be a variable or an array) is returned to the
calling program. A function is declared with the following statements:
Function Name (Arguments)

...

 Name = result

End Function

The return value must be assigned within the function body to the function name. This is done in
the sequence above using the Name = result statement. VBScript uses always a Variant data type
for the return value. The first line defining a function must contain the keyword Function followed
by the function name (GetValue for instance), followed by a bracket (). Within the bracket you
may declare parameters (also called arguments), which are required for the function call. The list-
ing shown below demonstrates how to use a function in VBScript.

520 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

'**

' File: Function.vbs (WSH sample in VBScript)

' Author: (c) Günter Born

'

' Demonstrates how to use a function.

'**

DIM i, j

j = 0

 For i = 1 to 10 ' loop 10 times

 j = addx (i, j) ' Add values using function addx

 Next

 WScript.Echo "Result: ", j

 WScript.Quit

Function addx (val1, val2)

 addx = val1 + val2

End Function

' End

Listing C.3.
Sample using a function

This sample uses the function addx with two parameters val1 and val2 to add these two values.
The result is returned as a function value within the following statement:
addx = val1 + val2

addx is the function name already built in the function header. The result val1 + val2 is assigned to
this function name. The function block ends with the statement End Function that terminates the
function and returns control back to the caller.

NOTE: VBScript supports also the optional Exit Function statement. If this statement is
found within a function, the function terminates and the control is returned to the calling
module.

A user-defined function may be used in the same way as a built-in VBScript function: Insert the
function name and the requested parameters (in brackets) on the right side of an assignment state-
ment. Within the listing shown above the function is called using the following statement:
j = addx (i, j)

User defined functions are the right tool to extend VBScript. Let's assume you need to calculate
the sales price of several products that includes a value added tax (VAT). You may define a func-
tion GetPrice using the code shown below:
Function GetPrice (Net, VAT) ' Get the price including tax

 GetPrice = Net * (1.0 + VAT/100.0)

End Function

Listing C.4.
Function to add VAT to a net price

Procedures and functions 521

© G. Born – Windows Scripting Host Tutorial

The VAT value may be passed (as a percentage value) to the function. Using this function within a
script requires only the function name and the arguments.
Net = 10.0

Vat = 16.0

Price = GetPrice (Net, Vat)

Price1 = GetPrice (100.0, 16.0)

The statements above demonstrates that you may use variables and/or constants as function pa-
rameters.

NOTE: You may not define a function within another function or procedure. The code of a
function must be declared on the script level. You should also note that local variable
declared within the function body are only valid during the function call.

Passing arguments ByRef/ByVal
Passing arguments to a function may be done with »Call by Value« or with »Call by Reference«.
Both variants are forced using the keywords ByVal or ByRef:
Public Function GetPrice (ByRef Net, ByVal Tax) ' calculate price

 GetPrice = Net * (1.0 + Vat/100.0)

End Function

If the interpreter detects the ByVal keyword, only the value of a parameter is passed to the func-
tion. If you uses the keyword ByRef, the address of the argument's value (the address of a constant
or a variable) is passed to the function. Passing a parameter by reference allows the called func-
tion/procedure to change the value of a parameter (see also the following sections).

Built-in functions
VBScript provides a collection of built-in (intrinsic) functions for different purposes. You may use
these functions in the same way as user defined functions. The statement:
i = Asc ("A")

assigns the ANSI-Code of the character A to the variable i. The conversion is done using the in-
trinsic function Asc, which need the character as a parameter.

Further information about functions and built-in functions may be obtained from the VBScript
language reference (http://msdn.microsoft.com/scripting).

Procedures
Beside functions procedures are also in common use within VBScript applications. Procedures
must be declared using the syntax shown below:
Sub Name (Parameter)

...

End Sub

A procedure delivers (in contrast to a function) no return value. To pass variable to a procedure,
you may use different approaches:

Note

522 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

♦ Declare a global variable at script level. The scope of a global variable is also valid within a
procedure.

♦ You may pass variables as parameters to a procedure. This allows you to change these values
within the procedure to return the results to the calling module.

The code sequence shown below demonstrates how to use a procedure to calculate a price includ-
ing value added tax.
'**

' File: Procedure.vbs (WSH sample in VBScript)

' Author: (c) Günter Born

'

' Demonstrates how to use a procedure

'**

DIM Price, Net, Tax

Tax = 16.0

Net = 100.0

GetPrice Net, Tax ' calculate value

WScript.Echo "Result: ", Price

WScript.Quit

Sub GetPrice (net1, tax1)

 Price = net1 * (1.0 + (tax1/100.0))

End Sub

'* End

Listing C.5.
Using a procedure

The sample uses several techniques to exchange information with a procedure. Within the script
level I have defined several global variables. The variable Price is global and may be accessed
within the procedure. So we use this global variable to return the result to the calling program. The
procedure itself requests two parameters during call. Note the syntax of the procedure call. You
must specify the procedure name followed by the parameters. The parameters are separated with
commas. An assignment as it is used in a function call is illegal.

NOTE: The Call keyword is not required during a procedure call. If you use the Call
keyword however, you need to insert the parameters into a bracket. The statement Call
GetPrice (100.0, 0.16) is equivalent to GetPrice 100.0, 0.16.

You may use also the keywords Public and Private within a procedure declaration (same as
with functions) to set the scope of a procedure explicitly.

Remarks about parameter passing (ByRef, ByVal)
Within a function or procedure call parameters must be separated with commas. A parameter is a
kind of local variable within the procedure. The interpreter may pass the value of a variable or the

Procedures and functions 523

© G. Born – Windows Scripting Host Tutorial

address of a variable to the called procedure. If a variable's value, which is passed by address, is
changed within a procedure, the value changes also on the level of the caller.

Within the sample shown above I have declared a variable Price on script level, to allow a proce-
dure to return the result. This isn't a good programming style however, because such procedures
can't be used without restrictions. The programmer must know the name of the global variable,
which is changed within the procedure. If somebody mistype the variable name, the script won't
work. Would it not be handier, if you may pass the values as parameters to the procedure and get
also the results back? The modified code shown below demonstrates that the use of global vari-
ables to return a result from a procedure isn't required.
'**

' File: Procedure1.vbs (WSH sample in VBScript)

' Author: (c) Günter Born

'

' Use a procedure.

'**

DIM Price, Net, Tax

Tax = 16.0

Net = 100.0

Call GetPrice (Price, Net, Tax) ' calculate value

WScript.Echo "Result: ", Price

WScript.Quit

Sub GetPrice (pris, net, tax)

 pris = net * (1.0 + (tax/100.0))

End Sub

'* End

ListingC.6.
Modified procedure sample

The procedure call requires a third parameter Price. This parameter is declared a pris within the
GetPrice procedure definition. If the value of pris is changed within the GetPrice procedure, this is
reflected also to the variable Price. So your program can use the result calculated within the pro-
cedure without using a global variable to exchange values. Just for demonstration purposes I have
also used the Call statement within this sample. But this hasn't any effect how the procedure
works.

This kind of parameter passing is known as Call by Reference and will be used by default in
VBScript. The interpreter passes the address of a variable to the procedure instead of passing just
the value. So the procedure can use the address to change the value of a variable within the caller.
The parameter passing by reference may be forced also using the ByRef keyword within the proce-
dure declaration. You must set the keyword in front of the parameter.

In several cases it is not allowed that a procedure may change the values of the calling program.
For instance: A program defined a variable tax, which is set once to 16,0. This value may be used
in several procedure calls. It may be deadly, if a procedure changes this value accidentally, be-
cause the calling program still needs the original value for further processing. The parameters net
and tax used in the sample above must not be returned from the procedure. To prevent that a modi-

524 C Introduction into VBScript

© G. Born – Windows Scripting Host Tutorial

fication of parameters within the procedure will influence the caller, you may declare in VBScript
that a parameter must be passed as a value. This is shown in the listing below.
'**

' File: Procedure2.vbs (WSH sample in VBScript)

' Author: (c) Günter Born

'

' Demonstrate using the Call-by-Value feature.

'**

DIM Price, Net, VAT

VAT = 16.0

Net = 100.0

Call GetPrice (Price, Net, VAT) ' calculate value

WScript.Echo "Result: ", Price, " VAT: ", VAT

WScript.Quit

Sub GetPrice (ByRef pris, ByVal net, ByVal tax)

 pris = net * (1.0 + (tax/100.0))

 tax = 17.0

End Sub

'*End

Listing C.7.
Parameter passing with ByVal

The procedure declaration indicates for each parameter whether it shall be passed ByVal or ByRef.
Pris is passed by reference (because we must return the result to the calling module), whilst net
and tax are passed as values. If the parameters net or tax are changed within the procedure, it
doesn't take effect on the values Net and VAT used in the script.

NOTE: As a last remark I should note that VBScript (up to version 5.0) doesn't supports
the On Error Goto statement known from VB and VBA. You may use only the On Error
Resume Next statement. A detailed VBScript language reference and tutorial may be
downloaded from Microsoft's website msdn.microsoft.com/scripting.

	Introduction into VBScript
	Statements, continued lines and comments
	VBScript statements
	Continued lines
	Comments
	Remarks about the structure of a VBScript program

	Variables and constants
	Constants
	Intrinsic constants
	Variables
	Some remarks about VBScript data types
	Variant subtypes
	The Option Explicit keyword
	Using the Dim statement
	Public and Private within a variable declaration
	Array declaration with Dim
	Variable names

	Operators
	Arithmetic operators
	Assigning object references with the Set-Operator
	Logical Operators
	Comparison operators
	Operator priorities

	Control structures
	If ... Then
	If ... Then ... Else
	If ... Then ... ElseIf
	Select Case

	Loops
	Do While ... Loop
	Do Until ... Loop
	Do ... Loop While
	Do ... Loop Until
	Exit Do
	For ... Next
	For Each ... Next
	Exit For
	While ... Wend

	Procedures and functions
	Functions
	Passing arguments ByRef/ByVal
	Built-in functions
	Procedures
	Remarks about parameter passing (ByRef, ByVal)

